Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.8.992

Role of Tumor-associated Macrophage in Tumor Microenvironment  

Min, Do Sik (Department of Molecular Biology, College of Natural Science, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.8, 2018 , pp. 992-998 More about this Journal
Abstract
Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.
Keywords
Cancer; macrophage; tumor-associated macrophage; tumor microenvironment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Y., Zheng, Y., Li, T., Wang, Q., Qian, J., Lu, Y., Zhang, M., Bi, E., Yang, M., Reu, F., Yi, Q. and Cai, Z. 2015. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 6, 24218-24229.
2 Loke, P. and Allison, J. P. 2003. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA. 100, 5336-5341.   DOI
3 Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., Pisarev, V., Sherman, S., Sporn, M. B. and Gabrilovich, D. 2011. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121, 4015-4029.   DOI
4 Ma, R., Ji, T., Chen, D., Dong, W., Zhang, H., Yin, X., Ma, J., Liang, X., Zhang, Y., Shen, G., Quin, X. and Huang, B. 2016. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. Oncoimmunology 5, e1118599.   DOI
5 Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V. and Chouaib, S. 2014. PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781-790.   DOI
6 Noy, R. and Pollard, J. W. 2014. Tumor-associated macrophage: From mechanisms to therapy. Immunity 41, 866-879.   DOI
7 Poh A. H. and Ernst, M. 2018. Targeting macrophages in Cancer: From Bench to besides. Front Oncol. 8, 49-65.   DOI
8 Qian, B. Z. and Pollard, J. W. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51.   DOI
9 Quail, D. F. and Joyce, J. A. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437.   DOI
10 Adeegbe, D. O. and Nishikawa, H. 2013. Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190-203.
11 Tripathi, C., Tewari, B. N., Kanchan, R. K., Baghel, K. S., Nautiyal, N., Shrivastava, R., Kaur, H., Bhatt, M. L. and Bhadauria, S. 2014. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5, 5350-5368.
12 Rohan, T. E., Xue, X., Lin, H. M., D'Alfonso, T. M., Ginter, P. S., Oktay, M. H., Robinson, B. D., Ginsberg, M., Gertler, F. B., Glass, A. G., Sparano, J. A., Condeelis, J. S. and Jones, J. G. 2014. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl. Cancer Inst. 106, 1-11.   DOI
13 Sharda, D. R., Yu, S., Ray, M., Squadrito, M. L., De Palma, M., Wynn, T. A., Morris, S. M. Jr. and Hankey, P. A. 2011. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J. Immunol. 187, 2181-2192.   DOI
14 Teng, F., Tian, W. Y., Wang, Y. M., Zhang, Y. F., Guo, F., Zhao, J., Gao, C. and Xue, F. X. 2016. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J. Hematol. Oncol. 9, 8-23.   DOI
15 Biswas, S. K. and Mantovani, A. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896.   DOI
16 Ambade, A., Satishchandran, A., Saha, B., Gyongyosi, B., Lowe, P., Kodys, K., Catalano, D. and Szabo, G. 2016. Hepatocellular carcinoma is accelerated by NASH involving M2 macrophage polarization mediated by hif-$1{\alpha}$ induced IL-10. Oncoimmunology 5, e1221557.   DOI
17 Belai, E. B., de Oliveira, C. E., Gasparoto, T. H., Ramos, R. N., Torres, S. A., Garlet, G. P., Cavassani, K. A., Silva, J. S. and Campanelli, A. P. 2014. PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis 35, 424-431.   DOI
18 Wang, H., Shao, Q., Sun, J., Ma, C., Gao, W., Wang, Q., Zhao, L. and Qu, X. 2016. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology 5, e1122157.   DOI
19 Yang, L., Wang, F., Wang, L., Huang, L., Wang, J., Zhang, B. and Zhang, Y. 2015. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6, 10592-10603.
20 Bingle, L., Brown, N. J. and Lewis, C. E. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254-265.   DOI
21 Cha, H. R., Lee, J. H., Hensel, J. A., Sawant, A. B., Davis, B. H., Lee, C. M., Deshane, J. S. and Ponnazhagan, S. 2016. Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate 76, 624-636.   DOI
22 Chen, Y., Zhang, S., Wang, Q. and Zhang, X. 2017. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 10, 36-49.   DOI
23 Coussens, L. M. and Pollard, J. W. 2011. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285.
24 De, I., Steffen, M. D., Clark, P. A., Patros, C. J., Sokn, E., Bishop, S. M., Litscher, S., Maklakova, V. I., Kuo, J. S., Rodriguez, F. J. and Collier, L. S. 2016. CSF1 overexpression promotes high-grade glioma formation without impacting the polarization status of glioma-associated microglia and macrophages. Cancer Res. 76, 2552-2560.   DOI
25 Doedens, A. L., Stockmann, C., Rubinstein, M. P., Liao, D., Zhang, N., DeNardo, D. G., Coussens, L. M., Karin, M., Goldrath, A. W. and Johnson, R. S. 2010. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475.   DOI
26 Greten, F. R. and Karin, M. 2004. The IKK/NF-kappaB activation pathway- a target for prevention and treatment of cancer. Cancer Lett. 206, 193-199.   DOI
27 Zhao, P., Gao, D., Wang, Q., Song, B., Shao, Q., Sun, J., Ji, C., Li, X., Li, P. and Qu, X. 2015. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol. Immunol. 12, 692-699.   DOI
28 Duraiswamy, J., Freeman, G. J. and Coukos, G. 2013. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 73, 6900-6912.   DOI
29 Gajewski, T. F., Schreiber, H. and Fu, Y. X. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014-1022.   DOI
30 Greaves, P. and Gribben, J. G. 2013. The role of B7 family molecules in hematologic malignancy. Blood 121, 734-744.   DOI
31 Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140, 883-899.   DOI
32 Grivennikov, S. I., Wang, K., Mucida, D., Stewart, C. A., Schnabl, B., Jauch, D., Taniguchi, K., Yu, G. Y., Osterreicher, C. H., Hung, K. E., Datz, C., Feng, Y., Fearon, E. R., Oukka, M., Tessarollo, L., Coppola, V., Yarovinsky, F., Cheroutre, H., Eckmann, L., Trinchieri, G. and Karin, M. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258.   DOI
33 Kong, L., Zhou, Y., Bu., H, Lv, T., Shi, Y. and Yang, J. 2016. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J. Exp. Clin. Cancer Res. 35, 131-142.   DOI
34 Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C. and Zheng, L. 2009. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327-1337.   DOI