Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2356

Turning Hepatic Cancer Stem Cells Inside Out - A Deeper Understanding through Multiple Perspectives  

Chan, Lok-Hei (Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Luk, Steve T. (Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Ma, Stephanie (Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Abstract
Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.
Keywords
liver cancer; microenvironment; signaling; therapeutic targeting; tumor-initiating cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akita, H., Marquardt, J.U., Durkin, M.E., Kitade, M., Seo, D., Conner, E.A., Andersen, J.B., Factor, V.M., and Thorgeirsson, S.S. (2014). MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res. 74, 5903-5913.   DOI   ScienceOn
2 Ali, N., Allam, H., May, R., Sureban, S.M., Bronze, M.S., Bader, T., Umar, S., Anant, S., and Houchen, C.W. (2011). Hepatitis C virus-induced cancer stem cell-like signatures in cell culture and murine tumor xenografts. J. Virol. 85, 12292-12303.   DOI   ScienceOn
3 Altekruse, S.F., McGlynn, K.A., and Reichman, M.E. (2009). Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J. Clin. Oncol. 27, 1485-1491.   DOI   ScienceOn
4 Arzumanyan, A., Friedman, T., Ng, I., Clayton, M., Lian, Z., and Feitelson, M. (2011). Does the hepatitis B antigen HBx promote the appearance of liver cancer stem cells. Cancer Res. 71, 3701-3708   DOI
5 Avila, M.A., Berasain, C., Torres, L., Martin-Duce, A., Corrales, F.J., Yang, H., Prieto, J., Lu, S.C., Caballeria, J., Rodes, J., et al. (2000). Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33, 907-914.   DOI   ScienceOn
6 Bach, P., Abel, T., Hoffmann, C., Gal, Z., Braun, G., Voelker, I., Ball, C.R., Johnston, I.C., Lauer, U.M., Herold-Mende, C., et al. (2013). Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 73, 865-874.   DOI   ScienceOn
7 Bartosch, B., Thimme, R., Blum, H.E., and Zoulim, F. (2009). Hepatitis C virus-induced hepatocarcinogenesis. J. Hepatol. 51, 810-820.   DOI   ScienceOn
8 Cai, J., Sun, W.M., Hwang, J.J., Stain, S.C., and Lu, S.C. (1996). Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology 24, 1090-1097   DOI
9 Chai, S., Tong, M., Ng, K.Y., Kwan, P.S., Chan, Y.P., Fung, T.M., Lee, T.K., Wong, N., Xie, D., Yuan, Y.F., et al. (2014). Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133. Oncotarget 5, 5725-5735.   DOI
10 Chen, H., Luo, Z., Dong, L., Tan, Y., Yang, J., Feng, G., Wu, M., Li, Z., and Wang, H. (2013a). CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One 8, e56878   DOI
11 Chiba, T., Suzuki, E., Negishi, M., Saraya, A., Miyagi, S., Konuma, T., Tanaka, S., Tada, M., Kanai, F., Imazeki, F., et al. (2012). 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int. J. Cancer 130, 2557-2567   DOI   ScienceOn
12 Chen, H., Luo, Z., Sun, W., Zhang, C., Sun, H., Zhao, N., Ding, J., Wu, M., Li, Z., and Wang, H. (2013b). Low glucose promotes CD133 mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells. Cancer Lett. 336, 204-212.   DOI   ScienceOn
13 Cheung, P.F., Cheng, C.K., Wong, N.C., Ho, J.C., Yip, C.W., Lui, V.C., Cheung, A.N., Fan, S.T., and Cheung, S.T. (2011). Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 6, e28246.   DOI
14 Chiba, T., Kita, K., Zheng, Y.W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., and Taniguchi, H. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44, 240-251.
15 Chiba, T., Suzuki, E., Yuki, K., Zen, Y., Oshima, M., Miyagi, S., Saraya, A., Koide, S., Motoyama, T., Ogasawara, S., et al. (2014). Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and-independent manners. PLoS One 9, e84807   DOI
16 Ding, W., Mouzaki, M., You, H., Laird, J.C., Mato, J., Lu, S.C., and Rountree, C.B. (2009). CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology 49, 1277-1286.   DOI   ScienceOn
17 Hagiwara, S., Kudo, M., Nagai, T., Inoue, T., Ueshima, K., Nishida, N., Watanabe, T., and Sakurai, T. (2012). Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br. J. Cancer 106, 1997-2003.   DOI   ScienceOn
18 Ezzeldin, M., Borrego-Diaz, E., Taha, M., Esfandyari, T., Wise, A.L., Peng, W., Rouyanian, A., Asvadi Kermani, A., Soleimani, M., Patrad, E., et al. (2014). RalA signaling pathway as a therapeutic target in hepatocellular carcinoma (HCC). Mol. Oncol. 8, 1043-1053.   DOI
19 Fan, Q.M., Jing, Y.Y., Yu, G.F., Kou, X.R., Ye, F., Gao, L., Li, R., Zhao, Q.D., Yang, Y., Lu, Z.H., et al. (2014). Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160-168   DOI   ScienceOn
20 Gleiberman, A.S., Encinas, J.M., Mignone, J.L., Michurina, T., Rosenfeld, M.G., and Enikolopov, G. (2005). Expression of nestin-green fluorescent protein transgene marks oval cells in the adult liver. Dev. Dyn. 234, 413-421.   DOI   ScienceOn
21 Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H.M., Akita, H., Takiuchi, D., Hatano, H., Nagano, H., et al. (2010). CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326-3339   DOI
22 He, G., Dhar, D., Nakagawa, H., Font-Burgada, J., Ogata, H., Jiang, Y., Shalapour, S., Seki, E., Yost, S.E., Jepsen, K., et al. (2013). Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384-396.   DOI   ScienceOn
23 Lai, K.P., Chen, J., He, M., Ching, A.K., Lau, C., Lai, P.B., To, K.F., and Wong, N. (2014). Overexpression of ZFX confers self-renewal and chemoresistance properties in hepatocellular carcinoma. Int. J. Cancer 135, 1790-1799   DOI   ScienceOn
24 Holczbauer, A., Factor, V.M., Andersen, J.B., Marquardt, J.U., Kleiner, D.E., Raggi, C., Kitade, M., Seo, D., Akita, H., Durkin, M.E., et al. (2013). Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221-231.   DOI   ScienceOn
25 Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J. Clin. 61, 69-90.   DOI
26 Kreso, A. and Dick, J.E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell 14, 275-291.   DOI   ScienceOn
27 Lee, T.K., Castilho, A., Cheung, V.C., Tang, K.H., Ma, S., and Ng, I.O. (2011). CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9, 50-63.   DOI   ScienceOn
28 Lee, T.K., Cheung, V.C., Lu, P., Lau, E.Y., Ma, S., Tang, K.H., Tong, M., Lo, J., and Ng, I.O. (2014a). Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60, 179-191.   DOI   ScienceOn
29 Lee, Y.H., Seo, D., Choi, K.J., Andersen, J.B., Won, M.A., Kitade, M., Gomez-Quiroz, L.E., Judge, A.D., Marquardt, J.U., Raggi, C., et al. (2014b). Antitumor effects in hepatocarcinoma of isoformselective inhibition of HDAC2. Cancer Res. 74, 4752-4761.   DOI   ScienceOn
30 Levrero, M. (2006). Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25, 3834-3847   DOI   ScienceOn
31 Liu, L., Yang, Z., Xu, Y., Li, J., Xu, D., Zhang, L., Sun, J., Xia, S., Zou, F., and Liu, Y. (2013b). Inhibition of oxidative stress-elicited AKT activation facilitates PPARgamma agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells. PLoS One 8, e73038   DOI
32 Li, C.H., Wang, Y.J., Dong, W., Xiang, S., Liang, H.F., Wang, H.Y., Dong, H.H., Chen, L., and Chen, X.P. (2011). Hepatic oval cell lines generate hepatocellular carcinoma following transfection with HBx gene and treatment with aflatoxin B1 in vivo. Cancer Lett. 311, 1-10.   DOI   ScienceOn
33 Li, L., Liu, Y., Guo, Y., Liu, B., Zhao, Y., Li, P., Song, F., Zheng, H., Yu, J., Song, T., et al. (2014). Regulatory miR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology [Epub ahead of print].
34 Liu, C., Liu, L., Shan, J., Shen, J., Xu, Y., Zhang, Q., Yang, Z., Wu, L., Xia, F., Bie, P., et al. (2013a). Histone deacetylase 3 participates in self-renewal of liver cancer stem cells through histone modification. Cancer Lett. 339, 60-69   DOI   ScienceOn
35 Liu, A.Y., Cai, Y., Mao, Y., Lin, Y., Zheng, H., Wu, T., Huang, Y., Fang, X., Lin, S., Feng, Q., et al. (2014). Twist2 promotes selfrenewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis 35, 537-545.   DOI   ScienceOn
36 Ma, S., Chan, K.W., Hu, L., Lee, T.K., Wo, J.Y., Ng, I.O., Zheng, B.J., and Guan, X.Y. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542-2556.   DOI   ScienceOn
37 Ma, S., Chan, K.W., Lee, T.K., Tang, K.H., Wo, J.Y., Zheng, B.J., and Guan, X.Y. (2008a). Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res. 6, 1146-1153.   DOI   ScienceOn
38 Marquardt, J.U., Raggi, C., Andersen, J.B., Seo, D., Avital, I., Geller, D., Lee, Y.H., Kitade, M., Holczbauer, A., Gillen, M.C., et al. (2011). Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology 54, 1031-1042.   DOI   ScienceOn
39 Ma, S., Lee, T.K., Zheng, B.J., Chan, K.W., and Guan, X.Y. (2008b). CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749-1758   DOI   ScienceOn
40 Ma, S., Tang, K.H., Chan, Y.P., Lee, T.K., Kwan, P.S., Castilho, A., Ng, I., Man, K., Wong, N., To, K.F., et al. (2010). miR-130b Promotes CD133(+) liver tumor-initiating cell growth and selfrenewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7, 694-707   DOI   ScienceOn
41 Martin-Padura, I., Marighetti, P., Agliano, A., Colombo, F., Larzabal, L., Redrado, M., Bleau, A.M., Prior, C., Bertolini, F., and Calvo, A. (2012). Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab. Invest. 92, 952-966.   DOI   ScienceOn
42 Mima, K., Okabe, H., Ishimoto, T., Hayashi, H., Nakagawa, S., Kuroki, H., Watanabe, M., Beppu, T., Tamada, M., Nagano, O., et al. (2012). CD44s regulates the TGF-beta-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72, 3414-3423.   DOI   ScienceOn
43 Mokkapati, S., Niopek, K., Huang, L., Cunniff, K.J., Ruteshouser, E.C., deCaestecker, M., Finegold, M.J., and Huff, V. (2014). Betacatenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Res. 74, 4515-4525.   DOI   ScienceOn
44 Piao, L.S., Hur, W., Kim, T.K., Hong, S.W., Kim, S.W., Choi, J.E., Sung, P.S., Song, M.J., Lee, B.C., Hwang, D., et al. (2012). CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 315, 129-137   DOI   ScienceOn
45 Morris, S.M., Carter, K.T., Baek, J.Y., Koszarek, A., Yeh, M.M., Knoblaugh, S.E., and Grady, W.M. (2014). TGF-beta signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene [Epub ahead of print].
46 Neuveut, C., Wei, Y., and Buendia, M.A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. J. Hepatol. 52, 594-604.   DOI   ScienceOn
47 Nik-Zainal, S., Van Loo, P., Wedge, D.C., Alexandrov, L.B., Greenman, C.D., Lau, K.W., Raine, K., Jones, D., Marshall, J., Ramakrishna, M., et al. (2012). The life history of 21 breast cancers. Cell 149, 994-1007   DOI   ScienceOn
48 Raggi, C., Factor, V.M., Seo, D., Holczbauer, A., Gillen, M.C., Marquardt, J.U., Andersen, J.B., Durkin, M., and Thorgeirsson, S.S. (2014). Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology 59, 2251-2262.   DOI   ScienceOn
49 Rountree, C.B., Senadheera, S., Mato, J.M., Crooks, G.M., and Lu, S.C. (2008). Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A-deficient mice. Hepatology 47, 1288-1297
50 Saito, T., Chiba, T., Yuki, K., Zen, Y., Oshima, M., Koide, S., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., et al. (2013). Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS One 8, e70010.   DOI
51 Sosa, M.S., Bragado, P., and Aguirre-Ghiso, J.A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611-622.   DOI   ScienceOn
52 Schrader, J., Gordon-Walker, T.T., Aucott, R.L., van Deemter, M., Quaas, A., Walsh, S., Benten, D., Forbes, S.J., Wells, R.G., and Iredale, J.P. (2011). Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53, 1192-1205.   DOI   ScienceOn
53 Shan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., et al. (2012) Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56, 1004-1014.   DOI   ScienceOn
54 Song, Y.J., Zhang, S.S., Guo, X.L., Sun, K., Han, Z.P., Li, R., Zhao, Q.D., Deng, W.J., Xie, X.Q., Zhang, J.W., et al. (2013). Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 339, 70-81.   DOI   ScienceOn
55 Sun, Z., Lu, P., Gail, M., Pee, D., Zhang, Q., Ming, L., Wang, J., Wu, Y., Liu, G., and Zhu, Y. (1999). Increased risk of hepatocellular carcinoma in male hepatitis B surface antigen carriers with chronic hepatitis who have detectable urinary aflatoxin metabolite M1. Hepatology 30, 379-383.   DOI
56 Sun, J.C., Pan, K., Chen, M.S., Wang, Q.J., Wang, H., Ma, H.Q., Li, Y.Q., Liang, X.T., Li, J.J., Zhao, J.J., et al. (2010). Dendritic cells-mediated CTLs targeting hepatocellular carcinoma stem cells. Cancer Biol. Ther. 10, 368-375.   DOI
57 Tschaharganeh, D.F., Xue, W., Calvisi, D.F., Evert, M., Michurina, T.V., Dow, L.E., Banito, A., Katz, S.F., Kastenhuber, E.R., Weissmueller, S., et al. (2014). p53-dependent nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158, 579-592.   DOI   ScienceOn
58 Sun, Y.F., Xu, Y., Yang, X.R., Guo, W., Zhang, X., Qiu, S.J., Shi, R.Y., Hu, B., Zhou, J., and Fan, J. (2013). Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology 57, 1458-1468   DOI   ScienceOn
59 Tang, H., Delgermaa, L., Huang, F., Oishi, N., Liu, L., He, F., Zhao, L., and Murakami, S. (2005). The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. J. Virol. 79, 5548-5556.   DOI   ScienceOn
60 Tang, K.H., Ma, S., Lee, T.K., Chan, Y.P., Kwan, P.S., Tong, C.M., Ng, I.O., Man, K., To, K.F., Lai, P.B., et al. (2012). CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 55, 807-820.   DOI   ScienceOn
61 Wan, S., Zhao, E., Kryczek, I., Vatan, L., Sadovskaya, A., Ludema, G., Simeone, D.M., Zou, W., and Welling, T.H. (2014). Tumorassociated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147, 1393-1404.   DOI   ScienceOn
62 Wang, X.Q., Ongkeko, W.M., Chen, L., Yang, Z.F., Lu, P., Chen, K.K., Lopez, J.P., Poon, R.T., and Fan, S.T. (2010). Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52, 528-539   DOI   ScienceOn
63 Wurmbach, E., Chen, Y.B., Khitrov, G., Zhang, W., Roayaie, S., Schwartz, M., Fiel, I., Thung, S., Mazzaferro, V., Bruix, J., et al. (2007). Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45, 938-947   DOI   ScienceOn
64 Wang, C., Yang, W., Yan, H.X., Luo, T., Zhang, J., Tang, L., Wu, F.Q., Zhang, H.L., Yu, L.X., Zheng, L.Y., et al. (2012). Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice. Hepatology 55, 108-120.   DOI   ScienceOn
65 Wang, X.Q., Ng, R.K., Ming, X., Zhang, W., Chen, L., Chu, A.C., Pang, R., Lo, C.M., Tsao, S.W., Liu, X., et al. (2013). Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines. PLoS One 8, e72435.   DOI
66 Wu, K., Ding, J., Chen, C., Sun, W., Ning, B.F., Wen, W., Huang, L., Han, T., Yang, W., Wang, C., et al. (2012). Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56, 2255-2267   DOI   ScienceOn
67 Xia, H., Ooi, L.L., and Hui, K.M. (2013). MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 58, 629-641.   DOI   ScienceOn
68 Xu, X., Xing, B., Hu, M., Xu, Z., Xie, Y., Dai, G., Gu, J., Wang, Y., and Zhang, Z. (2010). Recurrent hepatocellular carcinoma cells with stem cell-like properties: possible targets for immunotherapy. Cytotherapy 12, 190-200.   DOI   ScienceOn
69 Yang, Z.F., Ho, D.W., Ng, M.N., Lau, C.K., Yu, W.C., Ngai, P., Chu, P.W., Lam, C.T., Poon, R.T., and Fan, S.T. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153-166.   DOI   ScienceOn
70 Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H.Y., Jia, H., Ye, Q., Qin, L.X., Wauthier, E., et al. (2009). EpCAMpositive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012-1024.   DOI   ScienceOn
71 Yang, Z., Zhang, L., Ma, A., Liu, L., Li, J., Gu, J., and Liu, Y. (2011). Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One 6, e28405.   DOI
72 Yang, W., Wang, C., Lin, Y., Liu, Q., Yu, L.X., Tang, L., Yan, H.X., Fu, J., Chen, Y., Zhang, H.L., et al. (2012). OV6(+) tumorinitiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J. Hepatol. 57, 613-620.   DOI   ScienceOn
73 You, H., Ding, W., and Rountree, C.B. (2010). Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology 51, 1635-1644.   DOI   ScienceOn
74 Zhang, L., Sun, H., Zhao, F., Lu, P., Ge, C., Li, H., Hou, H., Yan, M., Chen, T., Jiang, G., et al. (2012). BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res. 72, 4276-4285.   DOI
75 Zhang, L., Li, H., Ge, C., Li, M., Zhao, F.Y., Hou, H.L., Zhu, M.X., Tian, H., Zhang, L.X., Chen, T.Y., et al. (2014). Inhibitory effects of transcription factor Ikaros on the expression of liver cancer stem cell marker CD133 in hepatocellular carcinoma. Oncotarget 15, 10621-10635.
76 Zhao, W., Wang, L., Han, H., Jin, K., Lin, N., Guo, T., Chen, Y., Cheng, H., Lu, F., Fang, W., et al. (2013). 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel ${\alpha}2{\delta}1$ subunit. Cancer Cell 23, 541-556.   DOI   ScienceOn