• Title/Summary/Keyword: microelectrode

Search Result 141, Processing Time 0.021 seconds

Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.379-383
    • /
    • 2005
  • This research aims to develop DNA chip array without an indicator. We fabricated microelectrode array by photolithography technology. Several DNA probes were immobilized on an electrode. Then, indicator-free target DNA was hybridized by an electrical force and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between DNA probe and mismatched DNA in an anodic peak. Immobilization of probe DNA and hybridization of target DNA could be confirmed by fluorescent. This indicator-free DNA chip microarray resulted in the sequence-specific detection of the target DNA quantitatively ranging from $10^{-18}\;M\;to\;10^{-5}$ M in the buffer solution. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Neural Recordings Obtained from Peripheral Nerves Using Semiconductor Microelectrode (반도체 미세전극을 이용한 말초 신경에서의 신경 신호 기록)

  • Hwang, E.J.;Kim, S.J.;Cho, H.W.;Oh, W.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.31-34
    • /
    • 1997
  • A semiconductor microelectrode array has been successfully used in obtaining single unit recordings from medial giant nerve of clay fish, rat saphenous nerve and abdominal ganglia of aplysia. The recording device fabricated using silicon microfabrication techniques is a depth-probe type and, previously, has been mostly used to record from central nerve system of vertebrates. From invertebrates, and also from peripheral nerves of vertebrates, however, the quality of the recorded signal depends heavily on the recording conditions, such as the proximity of the electrode site to the nerve cells and the size of the neuron. We have modeled the signal to noise ratio as unctions of these parameters and compared the experimental data with the calculated values thus obtained.

  • PDF

Fabrication of Planar-type Semiconductor Microelectrode Array and Its Application to Peripheral Nerve of Invertebrates (평판형 반도체 미세전극 어레이 제작 및 이를 이용한 무척추 동물의 말초신경다발 신호기록)

  • Hwang, E.J.;Yoon, T.H.;Kim, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.145-146
    • /
    • 1998
  • A planar-type silicon microelectrode array has been fabricated and used successfully in obtaining simultaneous multichannel recordings from peripheral nerve of invertebrates. This paper demonstrates that planar-type semiconductor electrode arrays are useful for studying traveling wave properties of action potential.

  • PDF

Fabrication of Depth-probe type Silicon Microelectrode array for Neural signal Recording (신경신호기록용 탐침형 반도체 미세전극 어레이의 제작)

  • Yoon, T.H.;Hwang, E.J.;Shin, D.Y.;Kim, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.147-148
    • /
    • 1998
  • In this paper, we developed the process for depth-probe type silicon microelectrode arrays. The process consists of four mask steps only. The steps are for defining sites, windows, and for shaping probe using plasma etch from above, and for shaping using wet etch from below, respectively. The probe thickness is controlled by dry etching, not by impurity diffusion. We used gold electrodes with a triple dielectric system consisting of oxide/nitride/oxide. The shank of the probe taper from 200um to tens of urn tip and has 30 um thickness.

  • PDF

Single-cell Electroporation and Gene Transfection using MEMS-based Microdevice with Cantilever-type Microelectrode (멤스 기반의 캔틸레버 형 전극을 가진 마이크로 디바이스를 이용한 단일세포의 Electroporation 및 유전자 Transfection)

  • Cho, Young-Hak;Kim, Beom-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, we present details on fabrication of single-cell electroporation microdevice, practical experiments of single-cell electroporation with our fabricated microdevice. Also, the continuous electroporation for the continuous flow of cells is used for high-throughput electroporation. The delivery efficiency and cell viability tests are provided and the successful GFP transfection into cells is also evaluated with a fluorescent microscope after electroporation. This device enables to reduce the size of samples and thus the use of small amount of reagents. Also, it makes it possible to permit to avoid cell discrimination (transfected cells versus non-transfected cells) encountered when traditional bulk electroporation is held.

Electrochemical Gene Detection Using Hoechat Groove Binder (Hoechst groove binder를 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Lee, Woo-Ki;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.65-70
    • /
    • 2006
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Electrochemical Fabrication of Multi Microelectrodes (전해 가공 방법을 이용한 다중 마이크로 전극 제작)

  • Kwon, Soon-Geun;Lim, Hyung-Jun;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1136-1141
    • /
    • 2004
  • In recent years, demands on microelectrode have been greatly enhanced because of its potential applications and mass production of microelectrodes is needed. An electrochemical fabrication is used as an method for the simple and cheap fabrication of multi microelectrodes. In this paper, one dimensional microelectrode array is used for fabricating of multi electrodes. A diffusion layer which is formed near the electrode surface has an effect on the shape error of multi microelectrodes. The optimal distance between electrodes to minimize shape errors of multi electrodes is investigated. Multi microelectrodes which has several tens of and hundreds of micrometer in diameter are fabricated at a time.

  • PDF

Electrochemical Detection of Single Nucleotide Polymorphism (SNP) Using Microelectrode Array on a DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자다형의 전기화학적 검출)

  • 최용성;권영수;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2004
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 ㎷/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic System.

Eletrochemical Detection of Gene using Microelectrode-array DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • ;;Eiichi Tamiya
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.729-737
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.