• Title/Summary/Keyword: microdevice

Search Result 10, Processing Time 0.028 seconds

Microdevice for Separation of Circulating Tumor Cells Using Embedded Magnetophoresis with V-shaped Ni-Co Nanowires and Immuno-nanomagnetic Beads

  • Park, Jeong Won;Lee, Nae-Rym;Cho, Sung Mok;Jung, Moon Youn;Ihm, Chunhwa;Lee, Dae-Sik
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.233-240
    • /
    • 2015
  • The novelty of this study resides in a 6"-wafer-level microfabrication protocol for a microdevice with a fluidic control system for the separation of circulating tumor cells (CTCs) from human whole blood cells. The microdevice utilizes a lateral magnetophoresis method based on immunomagnetic nanobeads with anti-epithelial cell adhesive molecule antibodies that selectively bind to epithelial cancer cells. The device consists of a top polydimethylsiloxane substrate for microfluidic control and a bottom substrate for lateral magnetophoretic force generation with embedded v-shaped soft magnetic microwires. The microdevice can isolate about 93% of the spiked cancer cells (MCF-7, a breast cancer cell line) at a flow rate of 40/100 mL/min with respect to a whole human blood/buffer solution. For all isolation, it takes only 10 min to process 400 mL of whole human blood. The fabrication method is sufficiently simple and easy, allowing the microdevice to be a mass-producible clinical tool for cancer diagnosis, prognosis, and personalized medicine.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

Single-cell Electroporation and Gene Transfection using MEMS-based Microdevice with Cantilever-type Microelectrode (멤스 기반의 캔틸레버 형 전극을 가진 마이크로 디바이스를 이용한 단일세포의 Electroporation 및 유전자 Transfection)

  • Cho, Young-Hak;Kim, Beom-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, we present details on fabrication of single-cell electroporation microdevice, practical experiments of single-cell electroporation with our fabricated microdevice. Also, the continuous electroporation for the continuous flow of cells is used for high-throughput electroporation. The delivery efficiency and cell viability tests are provided and the successful GFP transfection into cells is also evaluated with a fluorescent microscope after electroporation. This device enables to reduce the size of samples and thus the use of small amount of reagents. Also, it makes it possible to permit to avoid cell discrimination (transfected cells versus non-transfected cells) encountered when traditional bulk electroporation is held.

Visualization for the mixing state of a batch-type ultrasonic mixer for its application to the microdevice (마이크로믹서에의 응용을 위한 batch type 초음파믹서의 혼합 상태 가시화)

  • Heo, Pil-Woo;Yoon, Eui-Soo;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2005
  • An active ${\mu}$-mixer is important in Bio-MEMS and ${\mu}$-TAS. The mixing state depends on some kinds of factors including the intensity of ultrasonic radiation. We have visualized the mixing state of the mixing chamber with radiation time and presented the influence of the driving voltage in this research. It will be possible to compare the performances of the ultrasonic radiation parts used in the active ${\mu}$-mixer using this method.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Engineered microdevices for single cell immunological assay

  • Choi, Jong-Hoon
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.1.1-1.8
    • /
    • 2010
  • Microdevices have been used as effective experimental tools for the rapid and multiplexed analysis of individual cells in single-cell assays. Technological advances for miniaturizing such systems and the optimization of delicate controls in micron-sized space homing cells have motivated many researchers from diverse fields (e.g., cancer research, stem cell research, therapeutic agent development, etc.) to employ microtools in their scientific research. Microtools allow high-throughput, multiplexed analysis of single cells, and they are not limited by the lack of large samples. These characteristics may significantly benefit the study of immune cells, where the number of cells available for testing is usually limited. In this review, I present an overview of several microtools that are currently available for single-cell analyses in two popular formats: microarrays and microfluidic microdevices. Then, I discuss the potential to study human immunology on the single-cell level, and I highlight several recent examples of immunoassays performed with single-cell microdevice assays. Finally, I discuss the outlook for the development of optimized assay platforms to study human immune cells. The development and application of microdevices for studies on single immune cells presents novel opportunities for the qualitative and quantitative characterization of immune cells and may lead to a comprehensive understanding of fundamental aspects of human immunology.

Detection of Sequence-Specific Gene by Multi-Channel Electrochemical DNA Chips

  • Zhang, Xuzhi;Ji, Xinming;Cui, Zhengguo;Yang, Bing;Huang, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Five-channel electrochemical chips were fabricated based on the Micro-electromechanical System (MEMS) technology and were used as platforms to develop DNA arrays. Different kinds of thiolated DNA strands, whose sequences were related to white spot syndrome virus (WSSV) gene, were separately immobilized onto different working electrodes to fabricate a combinatorial biosensor system. As a result, different kinds of target DNA could be analyzed on one chip via a simultaneous recognition process using potassium ferricyanide as an indicator. To perform quantitative target DNA detection, a limit of 70 nM (S/N=3) was found in the presence of 600 nM coexisting noncomplementary ssDNA. The real samples of loop-mediated isothermal amplification (LAMP) products were detected by the proposed method with satisfactory result, suggesting that the multichannel chips had the potential for a high effective microdevice to recognize specific gene sequence for pointof-care applications.

An Innate Bactericidal Oleic Acid Effective Against Skin Infection of Methicillin-Resistant Staphylococcus aureus: A Therapy Concordant with Evolutionary Medicine

  • Chen, Chao-Hsuan;Wang, Yanhan;Nakatsuji, Teruaki;Liu, Yu-Tsueng;Zouboulis, Christos C.;Gallo, Richard L.;Zhang, Liangfang;Hsieh, Ming-Fa;Huang, Chun-Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2011
  • Free fatty acids (FFAs) are known to have bacteriocidal activity and are important components of the innate immune system. Many FFAs are naturally present in human and animal skin, breast milk, and in the bloodstream. Here, the therapeutic potential of FFAs against methicillin-resistant Staphylococcus aureus (MRSA) is demonstrated in cultures and in mice. Among a series of FFAs, only oleic acid (OA) (C18:1, cis-9) can effectively eliminate Staphylococcus aureus (S. aureus) through cell wall disruption. Lauric acid (LA, C12:0) and palmitic acid (PA, C16:0) do not have this ability. OA can inhibit growth of a number of Gram-positive bacteria, including hospital and community-associated MRSA at a dose that did not show any toxicity to human sebocytes. The bacteriocidal activities of FFAs were also demonstrated in vivo through injection of OA into mouse skin lesions previously infected with a strain of MRSA. In conclusion, our results suggest a promising therapeutic approach against MRSA through boosting the bacteriocidal activities of native FFAs, which may have been co-evolved during the interactions between microbes and their hosts.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF