References
- Bao, N., Wang, J., and Lu, C. (2008). Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391, 933-942. https://doi.org/10.1007/s00216-008-1899-x
- Bradshaw, E.M., Kent, S.C., Tripuraneni, V., Orban, T., Ploegh, H.L., Hafler, D.A., and Love, J.C. (2008). Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin Immunol 129, 10-18. https://doi.org/10.1016/j.clim.2008.06.009
- Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J.B., Rothberg, J.M., Link, D.R., Perrimon, N., and Samuels, M.L. (2009). Droplet microfluidi technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106, 14195-14200. https://doi.org/10.1073/pnas.0903542106
- Bruzewicz, D.A., Reches, M., and Whitesides, G.M. (2008). Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80, 3387-3392. https://doi.org/10.1021/ac702605a
- Di Carlo, D., Wu, L.Y., and Lee, L.P. (2006). Dynamic single cell culture array. Lab Chip 6, 1445-1449. https://doi.org/10.1039/b605937f
- Diercks, A.H., Ozinsky, A., Hansen, C.L., Spotts, J.M., Rodriguez, D.J., and Aderem, A. (2009). A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386, 30-35. https://doi.org/10.1016/j.ab.2008.12.012
- Easley, C.J., Rocheleau, J.V., Head, W.S., and Piston, D.W. (2009). Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal Chem 81, 9086-9095. https://doi.org/10.1021/ac9017692
- Faley, S.L., Copland, M., Wlodkowic, D., Kolch, W., Seale, K.T., Wikswo, J.P., and Cooper, J.M. (2009). Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9, 2659-2664. https://doi.org/10.1039/b902083g
- Fan, H.C., Blumenfeld, Y.J., El-Sayed, Y.Y., Chueh, J., and Quake, S.R. (2009). Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol 200, 543.e541-547.
- Fan, R., Vermesh, O., Srivastava, A., Yen, B.K., Qin, L., Ahmad, H., Kwong, G.A., Liu, C.C., Gould, J., Hood, L., et al. (2008). Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26, 1373-1378. https://doi.org/10.1038/nbt.1507
- Howard, R.E., Liao, P.F., Skocpol, W.J., Jackel, L.D., and Craighead, H.G. (1983). Microfabrication as a Scientific Tool. Science 221, 117-121. https://doi.org/10.1126/science.221.4606.117
- Hueber, W., Kidd, B.A., Tomooka, B.H., Lee, B.J., Bruce, B., Fries, J.F., Sonderstrup, G., Monach, P., Drijfhout, J.W., van Venrooij, W.J., et al. (2005). Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 52, 2645-2655. https://doi.org/10.1002/art.21269
- Huh, D., Gu, W., Kamotani, Y., Grotberg, J.B., and Takayama, S. (2005). Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26, R73-98. https://doi.org/10.1088/0967-3334/26/3/R02
- Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., et al. (2009). A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med 15, 1088-1092. https://doi.org/10.1038/nm.1966
- Kim, H., Cohen, R.E., Hammond, P.T., and Irvine, D.J. (2006). Live lymphocyte arrays for biosensing. Adv Funct Mater 16, 1313-1323. https://doi.org/10.1002/adfm.200500888
- Kim, H., Doh, J., Irvine, D.J., Cohen, R.E., and Hammond, P.T. (2004). Large area two-dimensional B cell arrays for sensing and cell-sorting applications. Biomacromolecules 5, 822-827. https://doi.org/10.1021/bm034341r
- Kinoshita, K., Ozawa, T., Tajiri, K., Kadowaki, S., Kishi, H., and Muraguchi, A. (2009). Identification of antigen-specific B cells by concurrent monitoring of intracellular Ca2+ mobilization and antigen binding with microwell array chip system equipped with a CCD imager. Cytometry A 75, 682-687.
- Kirschbaum, M., Jaeger, M.S., and Duschl, C. (2009). Correlating short-term Ca(2+) responses with long-term protein expression after activation of single T cells. Lab Chip 9, 3517-3525. https://doi.org/10.1039/b911865a
- Kumaresan, P., Yang, C.J., Cronier, S.A., Blazej, R.G., and Mathies, R.A. (2008). High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal Chem 80, 3522-3529. https://doi.org/10.1021/ac800327d
- Lim, C.T., and Zhang, Y. (2007). Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22, 1197-1204. https://doi.org/10.1016/j.bios.2006.06.005
- Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der Veen, A.G., and Ploegh, H.L. (2006). A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24, 703-707. https://doi.org/10.1038/nbt1210
- Manjarrez-Orduno, N., Quach, T.D., and Sanz, I. (2009). B cells and immunological tolerance. J Invest Dermatol 129, 278-288. https://doi.org/10.1038/jid.2008.240
- McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H., Schueller, O.J., and Whitesides, G.M. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27-40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
- McKenna, B.K., Selim, A.A., Richard Bringhurst, F., and Ehrlich, D.J. (2009). 384-channel parallel microfluidic cytometer for rare-cell screening. Lab Chip 9, 305-310. https://doi.org/10.1039/b811889b
- Mills, J.C., Roth, K.A., Cagan, R.L., and Gordon, J.I. (2001). DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3, E175-178. https://doi.org/10.1038/35087108
- Mittal, N., Flavin, S., and Voldman, J. (2007). Patterning of embryonic stem cells using the bio flip chip. J Vis Exp, 318.
- Myers, F.B., and Lee, L.P. (2008). Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015-2031. https://doi.org/10.1039/b812343h
- Nevill, J.T., Cooper, R., Dueck, M., Breslauer, D.N., and Lee, L.P. (2007). Integrated microfluidic cell culture and lysis on a chip. Lab Chip 7, 1689-1695. https://doi.org/10.1039/b711874k
- Ochsner, M., Dusseiller, M.R., Grandin, H.M., Luna-Morris, S., Textor, M., Vogel, V., and Smith, M.L. (2007). Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7, 1074-1077. https://doi.org/10.1039/b704449f
- Ogunniyi, A.O., Story, C.M., Papa, E., Guillen, E., and Love, J.C. (2009). Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4, 767-782. https://doi.org/10.1038/nprot.2009.40
- Poletaev, A.B., Stepanyuk, V.L., and Gershwin, M.E. (2008). Integrating immunity: the immunculus and self-reactivity. J Autoimmun 30, 68-73. https://doi.org/10.1016/j.jaut.2007.11.012
- Psaltis, D., Quake, S.R., and Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381-386. https://doi.org/10.1038/nature05060
- Quake, S.R., and Scherer, A. (2000). From micro- to nanofabrication with soft materials. Science 290, 1536-1540. https://doi.org/10.1126/science.290.5496.1536
- Rettig, J.R., and Folch, A. (2005). Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77, 5628-5634. https://doi.org/10.1021/ac0505977
- Ronan, J.L., Story, C.M., Papa, E., and Love, J.C. (2009). Optimization of the surfaces used to capture antibodies from single hybridomas reduces the time required for microengraving. J Immunol Methods 340, 164-169. https://doi.org/10.1016/j.jim.2008.10.018
- Rowat, A.C., Bird, J.C., Agresti, J.J., Rando, O.J., and Weitz, D.A. (2009). Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106, 18149-18154. https://doi.org/10.1073/pnas.0903163106
- Seidel, M., and Niessner, R. (2008). Automated analytical microarrays: a critical review. Anal Bioanal Chem 391, 1521-1544. https://doi.org/10.1007/s00216-008-2039-3
- Skelley, A.M., and Voldman, J. (2008). An active bubble trap and debubbler for microfluidic systems. Lab Chip 8, 1733-1737. https://doi.org/10.1039/b807037g
- Story, C.M., Papa, E., Hu, C.C., Ronan, J.L., Herlihy, K., Ploegh, H.L., and Love, J.C. (2008). Profiling antibody responses by multiparametric analysis of primary B cells. Proc Natl Acad Sci U S A 105, 17902-17907. https://doi.org/10.1073/pnas.0805470105
- Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., and Quake, S.R. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116. https://doi.org/10.1126/science.288.5463.113
- Valero, A., Merino, F., Wolbers, F., Luttge, R., Vermes, I., Andersson, H., and van den Berg, A. (2005). Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5, 49-55. https://doi.org/10.1039/b415813j
- Voldman, J., Gray, M.L., and Schmidt, M.A. (1999). Microfabrication in biology and medicine. Annu Rev Biomed Eng 1, 401-425. https://doi.org/10.1146/annurev.bioeng.1.1.401
- Zhu, H., Stybayeva, G., Macal, M., Ramanculov, E., George, M.D., Dandekar, S., and Revzin, A. (2008). A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8, 2197-2205. https://doi.org/10.1039/b810244a
- Zhu, H., Stybayeva, G., Silangcruz, J., Yan, J., Ramanculov, E., Dandekar, S., George, M.D., and Revzin, A. (2009). Detecting cytokine release from single T-cells. Anal Chem 81, 8150-8156. https://doi.org/10.1021/ac901390j