Browse > Article
http://dx.doi.org/10.4014/jmb.1011.11014

An Innate Bactericidal Oleic Acid Effective Against Skin Infection of Methicillin-Resistant Staphylococcus aureus: A Therapy Concordant with Evolutionary Medicine  

Chen, Chao-Hsuan (Division of Dermatology, Department of Medicine, University of California)
Wang, Yanhan (Division of Dermatology, Department of Medicine, University of California)
Nakatsuji, Teruaki (Division of Dermatology, Department of Medicine, University of California)
Liu, Yu-Tsueng (Moores Cancer Center, University of California)
Zouboulis, Christos C. (Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center)
Gallo, Richard L. (Division of Dermatology, Department of Medicine, University of California)
Zhang, Liangfang (Moores Cancer Center, University of California)
Hsieh, Ming-Fa (Department of Biomedical Engineering and R&D Center for Biomedical Microdevice Technology, Chung Yuan Christian University)
Huang, Chun-Ming (Division of Dermatology, Department of Medicine, University of California)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.4, 2011 , pp. 391-399 More about this Journal
Abstract
Free fatty acids (FFAs) are known to have bacteriocidal activity and are important components of the innate immune system. Many FFAs are naturally present in human and animal skin, breast milk, and in the bloodstream. Here, the therapeutic potential of FFAs against methicillin-resistant Staphylococcus aureus (MRSA) is demonstrated in cultures and in mice. Among a series of FFAs, only oleic acid (OA) (C18:1, cis-9) can effectively eliminate Staphylococcus aureus (S. aureus) through cell wall disruption. Lauric acid (LA, C12:0) and palmitic acid (PA, C16:0) do not have this ability. OA can inhibit growth of a number of Gram-positive bacteria, including hospital and community-associated MRSA at a dose that did not show any toxicity to human sebocytes. The bacteriocidal activities of FFAs were also demonstrated in vivo through injection of OA into mouse skin lesions previously infected with a strain of MRSA. In conclusion, our results suggest a promising therapeutic approach against MRSA through boosting the bacteriocidal activities of native FFAs, which may have been co-evolved during the interactions between microbes and their hosts.
Keywords
Staphylococcus aureus; oleic acid;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Speert, D. P., L. W. Wannamaker, E. D. Gray, and C. C. Clawson. 1979. Bactericidal effect of oleic acid on group A streptococci: Mechanism of action. Infect. Immun. 26: 1202-1210.
2 Stewart, M. E. 1992. Sebaceous gland lipids. Semin. Dermatol. 11: 100-105.
3 Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer. 1991. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137: 167-173.   DOI   ScienceOn
4 Martin, A. and M. Clynes. 1991. Acid phosphatase: Endpoint for in vitro toxicity tests. In Vitro Cell Dev. Biol. 27A: 183- 184.
5 Nakatsuji, T., M. C. Kao, L. Zhang, C. C. Zouboulis, R. L. Gallo, and C. M. Huang. 2010. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J. Invest. Dermatol. 130: 985-994.   DOI   ScienceOn
6 Nicollier, M., T. Massengo, J. P. Remy-Martin, R. Laurent, and G. L. Adessi. 1986. Free fatty acids and fatty acids of triacylglycerols in normal and hyperkeratotic human stratum corneum. J. Invest. Dermatol. 87: 68-71.   DOI   ScienceOn
7 Nieman, C. 1954. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev. 18: 147-163.
8 Ntambi, J. M. 1995. The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34: 139-150.   DOI   ScienceOn
9 Payne, D. J. 2008. Microbiology. Desperately seeking new antibiotics. Science 321: 1644-1645.   DOI
10 Kenny, J. G., D. Ward, E. Josefsson, I. M. Jonsson, J. Hinds, H. H. Rees, J. A. Lindsay, A. Tarkowski, and M. J. Horsburgh. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: Survival mechanisms and virulence implications. PLoS ONE 4: e4344.   DOI
11 Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, et al. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763-1771.   DOI   ScienceOn
12 Knapp, H. R. and M. A. Melly. 1986. Bactericidal effects of polyunsaturated fatty acids. J. Infect. Dis. 154: 84-94.   DOI   ScienceOn
13 Kollef, M. H. 2009. New antimicrobial agents for methicillinresistant Staphylococcus aureus. Crit. Care Resusc. 11: 282-286.
14 Kabara, J. J., D. Swieczkowski, A. J. Conley, and J. P. Truant. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 2: 23-28.   DOI   ScienceOn
15 Kotani, A., Y. Hayashi, R. Matsuda, and F. Kusu. 2003. Prediction of measurement precision of apparatus using a chemometric tool in electrochemical detection of high-performance liquid chromatography. J. Chromatogr. A 986: 239-246.   DOI
16 Lee, C., J. Barnett, and P. D. Reaven. 1998. Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions. J. Lipid Res. 39: 1239-1247.
17 Huang, C. M., C. H. Chen, D. Pornpattananangkul, L. Zhang, M. Chan, M. F. Hsieh, and L. F. Zhang. 2011. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32: 214-221.   DOI   ScienceOn
18 Kabara, J. J. 1984. Antimicrobial agents derived from fatty acids. J. Am. Oil. Chem. Soc. 61: 397-403.   DOI   ScienceOn
19 Kaplan, S. L., K. G. Hulten, B. E. Gonzalez, W. A. Hammerman, L. Lamberth, J. Versalovic, and E. O. Mason Jr. 2005. Threeyear surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis. 40: 1785-1791.   DOI   ScienceOn
20 Kangani, C. O., D. E. Kelley, and J. P. DeLany. 2008. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J. Chromatogr. B 873: 95-101.   DOI   ScienceOn
21 Kelsey, J. A., K. W. Bayles, B. Shafii, and M. A. McGuire. 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41: 951-961.   DOI   ScienceOn
22 Goetghebeur, M., P. A. Landry, D. Han, and C. Vicente. 2007. Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can. J. Infect. Dis. Med. 18: 27-34.
23 Hackbarth, C. J. and H. F. Chambers. 1993. Blai and Blar1 regulate beta-lactamase and Pbp 2a production in methicillin- Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 37: 1144-1149.   DOI   ScienceOn
24 Desbois, A. P., T. Lebl, L. Yan, and V. J. Smith. 2008. Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 81: 755-764.   DOI   ScienceOn
25 Hamosh, M. 1998. Protective function of proteins and lipids in human milk. Biol. Neonate 74: 163-176.   DOI   ScienceOn
26 Heczko, P. B., R. Lutticken, W. Hryniewicz, M. Neugebauer, and G. Pulverer. 1979. Susceptibility of Staphylococcus aureus and group A, B, C, and G streptococci to Free fatty acids. J. Clin. Microbiol. 9: 333-335.
27 Homa, D. G. and M. A. Palfreyman. 2000. Infectious diseases in the operating room. CRNA 11: 8-14.
28 Desbois, A. P. and V. J. Smith. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642.   DOI   ScienceOn
29 Fernandez-Lopez, R., C. Machon, C. M. Longshaw, S. Martin, S. Molin, E. L. Zechner, M. Espinosa, E. Lanka, and F. de la Cruz. 2005. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 151: 3517-3526.   DOI   ScienceOn
30 Diep, B. A., H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington. 2006. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 193: 1495-1503.   DOI   ScienceOn
31 Galbraith, H. and T. B. Miller. 1973. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bacteriol. 36: 659-675.   DOI
32 Georgel, P., K. Crozat, X. Lauth, E. Makrantonaki, H. Seltmann, S. Sovath, et al. 2005. A Toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect. Immun. 73: 4512-4521.   DOI   ScienceOn
33 Gibbons, M. A., D. M. Bowdish, D. J. Davidson, J. M. Sallenave, and A. J. Simpson. 2006. Endogenous pulmonary antibiotics. Scot. Med. J. 51: 37-42.
34 Gilbert, M., J. MacDonald, D. Gregson, J. Siushansian, K. Zhang, S. Elsayed, et al. 2006. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. CMAJ 175: 149-154.
35 Brien, S., P. Prescott, N. Bashir, H. Lewith, and G. Lewith. 2008. Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthr. Cartilage 16: 1277-1288.   DOI   ScienceOn
36 de Pablo, M. A. and G. Alvarez de Cienfuegos. 2000. Modulatory effects of dietary lipids on immune system functions. Immunol. Cell Biol. 78: 31-39.   DOI   ScienceOn
37 Cardoso, C. R. B., M. A. Souza, E. A. V. Ferro, S. Favoreto, and J. D. O. Pena. 2004. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 12: 235-243.   DOI   ScienceOn
38 Clarke, S. R., R. Mohamed, L. Bian, A. F. Routh, J. F. Kokai- Kun, J. J. Mond, A. Tarkowski, and S. J. Foster. 2007. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1: 199-212.   DOI   ScienceOn
39 Cohen, A. L., C. Shuler, S. McAllister, G. E. Fosheim, M. G. Brown, D. Abercrombie, et al. 2007. Methamphetamine use and methicillin-resistant Staphylococcus aureus skin infections. Emerg. Infect. Dis. 13: 1707-1713.   DOI
40 Adem, P. V., C. P. Montgomery, A. N. Husain, T. K. Koogler, V. Arangelovich, M. Humilier, S. Boyle-Vavra, and R. S. Daum. 2005. Staphylococcus aureus sepsis and the Waterhouse- Friderichsen syndrome in children. N. Engl. J. Med. 353: 1245- 1251.   DOI   ScienceOn
41 Boyle-Vavra, S. and R. S. Daum. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton- Valentine leukocidin. Lab. Invest. 87: 3-9.   DOI   ScienceOn
42 Bakker-Woudenbera, I. A. J. M., G. Storm, and M. C. Woodle. 1994. Liposomes in the treatment of infections. J. Drug Target. 2: 363-371.   DOI   ScienceOn
43 Bergsson, G., J. Arnfinnsson, O. Steingrimsson, and H. Thormar. 2001. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109: 670-678.   DOI   ScienceOn
44 Bodoprost, J. and H. Rosemeyer. 2007. Analysis of phenacylester derivatives of fatty acids from human skin surface sebum by reversed-phase HPLC: Chromatographic mobility as a function of physico-chemical properties. Int. J. Mol. Sci. 8: 1111-1124.   DOI
45 Zesch, A. 1983. Skin irritation by topical drugs. Derm. Beruf. Umwelt. 31: 74-78.
46 Wilkinson, D. I. and J. T. Walsh. 1974. Effect of various methods of epidermal-dermal separation on distribution of acetate- C-14-labeled polyunsaturated fatty acids in skin compartments. J. Invest. Dermatol. 62: 517-521.   DOI   ScienceOn
47 Wilson, P. C. and B. Rinker. 2009. The incidence of methicillinresistant Staphylococcus aureus in community-acquired hand infections. Ann. Plas. Surg. 62: 513-516.   DOI   ScienceOn
48 Yang, D. R., D. Pornpattananangkul, T. Nakatsuji, M. Chan, D. Carson, C. M. Huang, and L. F. Zhang. 2009. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 30: 6035-6040.   DOI   ScienceOn
49 Zouboulis, C. C., H. Seltmann, H. Neitzel, and C. E. Orfanos. 1999. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J. Invest. Dermatol. 113: 1011-1020.   DOI   ScienceOn
50 Takano, T., K. Saito, L. J. Teng, and T. Yamamoto. 2007. Spread of community-acquired methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Taipei, Taiwan in 2005, and comparison of its drug resistance with previous hospitalacquired MRSA. Microbiol. Immunol. 51: 627-632.
51 Takizawa, Y., I. Taneike, S. Nakagawa, T. Oishi, Y. Nitahara, N. Iwakura, et al. 2005. A Panton-Valentine leucocidin (PVL)- positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multipledrug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J. Clin. Microbiol. 43: 3356-3363.   DOI   ScienceOn
52 Tancrede, C. 1992. Role of human microflora in health and disease. Eur. J. Clin. Microbiol. 11: 1012-1015.   DOI   ScienceOn
53 Smith, P. A. and F. E. Romesberg. 2007. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat. Chem. Biol. 3: 549-556.   DOI   ScienceOn
54 Van Bambeke, F., M. P. Mingeot-Leclercq, M. J. Struelens, and P. M. Tulkens. 2008. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29: 124-134.   DOI   ScienceOn
55 Weigel, L. M., D. B. Clewell, S. R. Gill, N. C. Clark, L. K. McDougal, S. E. Flannagan, et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302: 1569-1571.   DOI
56 Pereira, L. M., E. Hatanaka, E. F. Martins, F. Oliveira, E. A. Liberti, S. H. Farsky, R. Curi, and T. C. Pithon-Curi. 2008. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem. Funct. 26: 197-204.   DOI   ScienceOn
57 Peschel, A., R. W. Jack, M. Otto, L. V. Collins, P. Staubitz, G. Nicholson, et al. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193: 1067-1076.   DOI   ScienceOn
58 Sado Kamdem, S., M. E. Guerzoni, J. Baranyi, and C. Pin. 2008. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus. Int. J. Food Microbiol. 128: 122-128.   DOI   ScienceOn