• Title/Summary/Keyword: microcrack area

Search Result 21, Processing Time 0.026 seconds

Service life prediction of chloride-corrosive concrete under fatigue load

  • Yang, Tao;Guan, Bowen;Liu, Guoqiang;Li, Jing;Pan, Yuanyuan;Jia, Yanshun;Zhao, Yongli
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Chloride corrosion has become the main factor of reducing the service life of reinforced concrete structures. The object of this paper is to propose a theoretical model that predicts the service life of chloride-corrosive concrete under fatigue load. In the process of modeling, the concrete is divided into two parts, microcrack and matrix. Taking the variation of mcirocrack area caused by fatigue load into account, an equation of chloride diffusion coefficient under fatigue load is established, and then the predictive model is developed based on Fick's second law. This model has an analytic solution and is reasonable in comparison to previous studies. Finally, some factors (chloride diffusion coefficient, surface chloride concentration and fatigue parameter) are analyzed to further investigate this model. The results indicate: the time to pit-to-crack transition and time to crack growth should not be neglected when predicting service life of concrete in strong corrosive condition; the type of fatigue loads also has a great impact on lifetime of concrete. In generally, this model is convenient to predict service life of chloride-corrosive concrete with different water to cement ratio, under different corrosive condition and under different types of fatigue load.

A Study on the Mechanical Properties of $ZrO_2$ Based Composite ($ZrO_2$를 이차상으로한 복합체의 기계적 특성)

  • 신동우;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.76-84
    • /
    • 1985
  • Mechanical property enhancing mechanisms of $Al_2O_3-ZrO_2$ two phase ceramic composites were studied for several compositions of different $ZrO_2$/$Al_2O_3$ ratio. Microstructural analysis of $Al_2O_3-ZrO_3$(pure) composites indicated that pre-existing microcrack due to larger $ZrO_2$ particle at grain boundary extended along alumina grain boundaries within process zone. Microcracks also nucleated when very small $ZrO_2$ particles at the grain boundaries transformed to monoclinic phase at near of main crack tip. These types of microcracks could contribute to the toughening achieved by creating additional crack surface area during crack propagation. Microstructural analyses also showed that the average grain size and abnormal grain size of $Al_2O_3$ were decreased with increasing $ZrO_2$ vol% in $Al_2O_3$ matrix. As a result it could be concluded as follows In TEX>$Al_2O_3-ZrO_3$(pure) system 1. Microcrack nucleation (stress-induced microcracking) and extension was effective mechanism for absorpiton of fracture energy 2, More narrow distribution and smaller grain size of $Al_2O_3$ due to $ZrO_2$particles mainly contributed to main-tatin the strength and hardness.

  • PDF

Microcrack Orientations in Bulgugsa Granites from Southwestern Gyeongsang Basin (경상분지 남서부 일대의 불국사 화강암류에서 발달하는 미세균열의 방향성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.206-221
    • /
    • 2008
  • We have studied general orientational characteristics of microcracks distributed in Bulgugsa Granites of southwestern Gyeongsang Basin. Microcracks of 131 sets, which were developed on horizontal surfaces of II rock samples collected from Sacheon-Gosung, Geoje-si and Namhae-gun areas, were distinguished by image processing. Then, 45 sets with a distinct linear array on image were sorted out. These microcracks can be comparable with vertical grain planes. Orientations of these microcracks were compared with those of vertical rift and grain planes developed in Cretaceous and Jurassic granites of Korea. In the distribution chart, the agreement of the distribution pattern between microcracks of 45 sets and above vertical planes suggests that microcrack systems developed all over the study area also occur regionally in Cretaceous and Jurassic granites of Korea. Whole domain of the directional angle-frequency chart can be divided into 20 domains in terms of the phases of the distribution of microcracks. Meanwhile, 18 domains from 45 sets of microcracks were compared with the maximum principal stress orientations suggested from previous studies. The majority of maximum principal stress orientations pertain to domain $1{\sim}2$, $5{\sim}6$, $11{\sim}15$, $17{\sim}18$ and $19{\sim}20$, and these domains are coincident with the orientation of the 1st and 2nd-frequency orders represented in a rose diagram for 45 sets of microcracks. Representative orientations of open microcrack reflect the maximum principal stress orientations suggested in previous studies.

Paleostress from Healed Microcracks and Fluid Inclusions in Quartz of the Jurassic Granites in the Southwestern Ogcheon Folded Belt (옥천습곡대 서남부지역에 분포하는 쥬라기 화강암류의 석영내 아문 미세균열 및 유체포유물을 이용한 고응력장)

  • Kang, Seong-Seung;Yoo, Bong-Chul;Jang, Bo-An;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2009
  • Paleostress was interpreted by analyzing the healed microcracks and the secondary fluid inclusions in quartz of the Jurassic granites distributed in the southwestern Ogcheon Folded Belt, South Korea. The most dominant direction of healed microcracks in the study area was oriented $N30^{\circ}W$, and $N70^{\circ}W$ direction was also recognized. The formation temperatures of fluid inclusions were ranged $380-550^{\circ}C$ and the age of healed microcrack formations might have been approximately 166-200 Ma. Comparing the paleostress orientation obtained from the direction of healed microcracks to the formation age of healed microcracks estimated from the secondary fluid inclusions, it is considered that granitic rock body in study area was subject to a maximum horizontal principal stress along the NNW-SSE and WNW-ESE directions in the early Jurassic to middle Jurassic.

Statistical Analysis on Microcrack Length Distribution in Tertiary Crystalline Tuff (제3기 결정질 응회암에서 발달하는 미세균열의 길이 분포에 대한 통계적 분석)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.23-37
    • /
    • 2011
  • The scaling properties on the length distribution of microcrack populations from Tertiary crystalline tuff are investigated. From the distribution charts showing length range with 15 directional angles and five groups(I~V), a systematic variation appears in the mean length with microcrack orientation. The distribution charts are distinguished by the bilaterally symmetrical pattern to nearly N-S direction. The whole domain of the length-cumulative frequency diagram for microcrack populations can be divided into three sections in terms of phases of the distribution of related curves. Especially, the linear middle section of each diagram of five groups represents a power-law distribution. The frequency ratio of linear middle sections of five groups ranges from 46.6% to 67.8%. Meanwhile, the slope of linear middle section of each group shows the order: group V($N60{\sim}90^{\circ}E$, -2.02) > group IV($N20{\sim}60^{\circ}E$, -1.55) > group I($N60{\sim}90^{\circ}W$, -1.48), group II($N10{\sim}60^{\circ}W$, -1.48) > group III($N10^{\circ}W{\sim}N20^{\circ}E$, -1.06). Five sub-populations(five groups) that closely follow the power-law length distribution show a wide range in exponents( -1.06 - -2.02). These differences in exponent among live groups emphasizes the importance of orientation effect. In addition, breaks in slope in the lower parts of the related curves represent the abrupt development of longer lengths, which is reflected in the decrease in the power-law exponent. Especially, such a distribution pattern can be seen from the diagram with $N10{\sim}20^{\circ}E,\;N10{\sim}20^{\circ}W$ and $N60{\sim}70^{\circ}W$ directional angles. These three directional angles correspond with main directions of faults developed around the study area. The distribution chart showing the individual characteristics of the length-cumulative frequency diagrams for 15 directional angles were made. By arraying above diagrams according to the categories of three groups(A, B and C), the differences in length-frequency distributions among these groups can be easily derived. The distribution chart illustrates the importance of analysing microcrack sets separately. From the related chart, the occurrence frequency of shorter microcracks shows the order: group A > group B > group C. These three types of distribution patterns could reveal important information on the processes occurred during microcrack growth.

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression (일축압축하에서 포천화강암의 역학적 이방성)

  • Park Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.337-348
    • /
    • 2005
  • Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (2) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(2))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order ($H2{\rightarrow}R1$) on the density (${\rho}$) of microcrack length. The various parameters were extracted through the combination of above two types of diagrams. The evaluation for the six directions of rock cleavages was performed using the four groups (I~IV) of parameters such as (I) intersection angle (${\alpha}-{\beta}$), exponent difference (${\lambda}_S-{\lambda}_L$), length of line (ol and ll'), length ratio (ol/os and ll'/sl'), mean length ((ss'+ll')/2), area of right-angled triangle (${\Delta}oaa_a^{\prime}$ and ${\Delta}obb_a^{\prime}$) and area difference (${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) length of line (oa and os) and area (${\Delta}oaa^{\prime}$), (III) length of line (sl') and length ratio (ss'/ll') and (IV) length of line (ob, ss' and ls') and area (${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢ll'ss'). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of parameters for three rock cleavages are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2), (II) R < G < H, (III) G < H < R and (IV) H < G < R. On the contrary, the values of parameters for three planes are in orders of (I) R' < G' < H', (II) H' < G' < R' and (III and IV) R' < H' < G'. Especially the values of parameters belonging to group I and group II show mutual reverse orders. In conclusion, this type of correlation analysis is useful for discriminating three quarrying planes.

P wave Velocity Variation of the Pochon Granite due to the Cyclic Loadings (압축피로에 의한 포천화강암의 P파속도 변화 특성)

  • Kim, Yeong Hwa;Jang, Bo-An;Kim, Jae Dong;Rhee, Chan Goo;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.231-240
    • /
    • 1997
  • The behavior of rocks and microcrack development due to fatigue stresses are investigated using cyclic loading tests and ultrasonic velocity measurements. Twenty six medium-grained granite samples from the Pochon area are selected for measurements. Ultrasonic velocities are measured for samples before fatigue test to characterize the pre-existing microcracks. Then, thirteen different cycles of loadings with 70% and 80% dynamic strength are applied to the samples. The ultrasonic velocities are measured again to compare velocities after applications of fatigue stress with those before applications of fatigue stress. The results show that most microcracks are developed along the direction parallel to the axis of loading and that the amount of microcracks increases, as loading levels and numbers of cycle increase.

  • PDF

Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal (용착금속의 파괴인성에 미치는 불균일 미세조직의 영향)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF

The Effect of the DIC Speckle Patterns for a Microcrack Measurement (미소균열 측정에 대한 DIC 스펙클 형상의 영향)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.15-21
    • /
    • 2019
  • In order to secure the safety of various machinery, it is very important to develop a technique for accurately and quickly measuring the cracks generated in the mechanical equipment and evaluating the mechanical characteristics. The evaluation of the mechanical properties is accompanied by an appropriate strain measurement according to the material and crack occurrence of the target structure. Especially, when micro cracks are generated, the evaluation method is very important. Digital image correlation is an optical full field displacement measuring method which is using currently with speckles in the interested area. However the evaluation method and conditions of image distributions have to be considered carefully to measure the crack occurrence because the images of the speckle patterns affect the quality of displacement results. In this study, the speckle pattern density is characterized to improve the accuracy of the measurement method. And also the micro crack initiation is detected by the measured displacement in the adopted speckle pattern distribution. It is shown that the proposed method is useful to determine the density pattern distribution for the accurate measurement and crack detection.