Browse > Article

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression  

Park Deok-Won (Groundwater & Geothermal Resources Division Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of Engineering Geology / v.15, no.3, 2005 , pp. 337-348 More about this Journal
Abstract
Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.
Keywords
granite; microcrack; Poisson's ratio; material constant; mechanical anisotropy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 서용석, 박덕원, 2003, 국내 주라기 화강암의 역학적 이방성, 지질공학, 13, 2, 257-266
2 徐庸碩, 淸木降文, 市川康明, 1999, マイクロクラックの發生.進展に起因し た結晶質岩の應力緩和現象に關する水浸一軸試驗, 材料, 48, 1255-1262
3 이상은, 조상호, 양형식, 박홍민, 1999, 조사선을 이용한 화강암의 미세 불연속면 분포성상 평가, 터널과 지하공간, 9, 364-372
4 Donath, F. A., 1964, Strength variation and deformational behavior in anisotropic rock, In:State of Stress in the earth's crust, Judd, W. R(ed.), New York.American Elservier, 281-297
5 Peng, S. and Johnson, A., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite, Int. J. Rock Mech. Min. Sci. & Ceomech. Abstr., 9, 37-86   DOI   ScienceOn
6 Tapponnier, P. and Brace, W., 1976, Development of stress-induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 13, 103-112   DOI   ScienceOn
7 Walsh, J. B., 1965, The effect of cracks on the uniaxial elastic compression of rocks, J. Ceophy. Res., Vol. 70,319-411   DOI
8 백환조, 김덕현, 최성범, 1998, 암석의 미세균열의 발달과 분포의 예측방법에 관한 연구, 터널과 지하공간, 8, 226-233
9 Kranz, R. L., 1983, Microcrack in rocks:a review, Tectonophysics, 100:449-480   DOI   ScienceOn
10 최병열, 1981, 등방성 응회암질 사암의 비선형적 변형, 지질학회지, Vol. 17, 250-256
11 이병대, 장보안, 윤현수, 이한영, 진명식, 1999, 문경지역에 분포하는 화강암의 미세균열 발달특성, 암석학회지, 8, 1, 24-33
12 Brace W. F. and Paulding B. W., 1966, Dilatancy in the fracture of crystalline rocks, J. Ceophys. Res., 66, 3939-3953
13 Lama, R M. and Vutukuri, V. S., 1978, Handbook on mechanical properties of rocks, Vol II, Trans Tech publications, 117-148
14 이정인, 1974, 삼축압축하에서 암석의 제직변형도 곡선에 의한 변형거동에 관하여, 대한광산학회지, Vol. 11, 122-137
15 장보안, 김재동, 1995, 압축피로하중에 의한 반려암, 사암 및 대리암에서의 미세균열 발달, 터널과 지하공간 5, 240-250
16 김재극, 1971, 단축압축하에서 이방성암석의 미세균열발달과 강도에 미치는 영향, 대한광산학회지, Vol. 8, 151-170
17 박덕원, 서용석, 정교철, 김영기, 2001, 주라기 화강암에 발달하는 결의 현미경학적 분석, 지질공학, 11, 51-62
18 Walsh, J. B., and Brace W. F., 1966, Elasticity of rock A review of some recent theoretical studies, Rock Mech. Eng. Ceol. 4, 283-296
19 장보안, 오선환, 2001, 포천화강암내에 발달한 결의 역학적 이방성과 미세균열의 상관성, 지질공학, 11, 2, 191-203
20 Bordia, S. K., 1972, Complete stress-volumetric strain equation for brittle rock up to strength fail me, Int. J. Rock Mech. Min. Sci., Vol 9, 17-24   DOI   ScienceOn
21 Wawersik, W. and Fairhurst, C., 1970, A study of brittle rock fracture in laboratory compression experiments, Int. J. Rock Mech, Min. Sci. & Ceomech. Abstr., 7,561-575   DOI   ScienceOn
22 Segall, P., 1984, Formation and growth of extensional fracture sets, Ceol. Soc. Am. Bull., 95, 454-462   DOI   ScienceOn
23 정태종, 1996, 백악기 사암과 셰일에 대한 포아송비의 변화, 지질공학, 6, 2, 103-110
24 김기주, 이정인, 김재극, 1985, 삼축압축하에서 암석의 연약면이 파괴강도에 미치는 영향, 대한광산학회지, Vol. 22, 90-97
25 김영기, 고인석, 정태종, 이용태, 1992, 왜관부근 백악기 사암의 결고 및 역학성, 대한지질공학회, Vol. 1, 27-30
26 Cramberg, J., 1965, Axial cleavage fracture, Eng. Geol., 1(1), 31-72   DOI   ScienceOn
27 Brady, B. T., 1970, A mechanical equation of state for brittle rock, Int. J. Rock Mech. Min. Sci., Vol 9, 385-421
28 Lee, S. E., S. H. Cho, Y. S. Seo, H. S. Yang. H. M. Park, 2001, The effect of microcracks on the mechanical anisotropy of granite, Materials Science Research International, 7,7-13
29 Bieniawski, Z. T., 1968, Mechanism of brittle fracture of rock, Part I-Part 3., Int. J. Rock Mech. Min. Sci., Vol 4, 395-430
30 Martin, C. and Chandler, N., 1994, The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. & Ceomech. Abstr., 31, 643-659   DOI   ScienceOn