Browse > Article
http://dx.doi.org/10.7854/JPSK.2011.20.1.023

Statistical Analysis on Microcrack Length Distribution in Tertiary Crystalline Tuff  

Park, Deok-Won (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.20, no.1, 2011 , pp. 23-37 More about this Journal
Abstract
The scaling properties on the length distribution of microcrack populations from Tertiary crystalline tuff are investigated. From the distribution charts showing length range with 15 directional angles and five groups(I~V), a systematic variation appears in the mean length with microcrack orientation. The distribution charts are distinguished by the bilaterally symmetrical pattern to nearly N-S direction. The whole domain of the length-cumulative frequency diagram for microcrack populations can be divided into three sections in terms of phases of the distribution of related curves. Especially, the linear middle section of each diagram of five groups represents a power-law distribution. The frequency ratio of linear middle sections of five groups ranges from 46.6% to 67.8%. Meanwhile, the slope of linear middle section of each group shows the order: group V($N60{\sim}90^{\circ}E$, -2.02) > group IV($N20{\sim}60^{\circ}E$, -1.55) > group I($N60{\sim}90^{\circ}W$, -1.48), group II($N10{\sim}60^{\circ}W$, -1.48) > group III($N10^{\circ}W{\sim}N20^{\circ}E$, -1.06). Five sub-populations(five groups) that closely follow the power-law length distribution show a wide range in exponents( -1.06 - -2.02). These differences in exponent among live groups emphasizes the importance of orientation effect. In addition, breaks in slope in the lower parts of the related curves represent the abrupt development of longer lengths, which is reflected in the decrease in the power-law exponent. Especially, such a distribution pattern can be seen from the diagram with $N10{\sim}20^{\circ}E,\;N10{\sim}20^{\circ}W$ and $N60{\sim}70^{\circ}W$ directional angles. These three directional angles correspond with main directions of faults developed around the study area. The distribution chart showing the individual characteristics of the length-cumulative frequency diagrams for 15 directional angles were made. By arraying above diagrams according to the categories of three groups(A, B and C), the differences in length-frequency distributions among these groups can be easily derived. The distribution chart illustrates the importance of analysing microcrack sets separately. From the related chart, the occurrence frequency of shorter microcracks shows the order: group A > group B > group C. These three types of distribution patterns could reveal important information on the processes occurred during microcrack growth.
Keywords
scaling property; length-cumulative frequency diagram; linear middle section; sub-population; power-law exponent;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Watterrson, J., Walsh, J.J., Gillespie, P.A. and Easten, S., 1996, Scaling systematics of fault sizes on a large-scale fault map. J. Struct. Geol., 18, 199-214.   DOI   ScienceOn
2 Wojtal, S., 1994, Fault scaling laws and the temporal evolution of fault systems. J. Struct. Geol., 16, 603-612.   DOI   ScienceOn
3 Yielding, G., Walsh, J. and Watterson, J., 1992, The prediction of small-scale faulting in reservoirs. First Break 10, 449-460.
4 Zhao, Y., 1998, Crack pattern evolution and a fractal damage constitutive model for rock. Int. J. Rock Mech. Min. Sci. 35, 349-366.   DOI   ScienceOn
5 Homand, F., Hoxha, D., Belem, T., Pons, M., Hoteit, N., 2000, Geometic analysis of damaged microcracking in granites. Mechanics of materials. 32, 361-376.   DOI   ScienceOn
6 Hwang, I.G. 1993, Fan-delta systems in the Pohang basin (Miocene), SE Korea. PhD Thesis, Seoul Nat'l Univ. 973p.
7 Koike, K., Ichikawa, Y. 2006, Spartial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions. Computer & Geosciences, 32, 1079-1095.   DOI   ScienceOn
8 Koukouvelas, I., Asimakopoulos, M. and Doutsos, T., 1999, Fractal characteristics of active normal faults: an example of the eastern Gulf of Corinth, Greece. Tectonophysics, 308, 263-274.   DOI   ScienceOn
9 Mansfield, C. and Cartwright, J., 2001, Fault growth by linkage: observation and implications from analogue models. J. Struct. Geol., 23, 745-763.   DOI   ScienceOn
10 Marrett, R and Allmendinger, R,W., 1992, Amount of extension on small faults: An example from the Viking graben. Geology, 20, 47-50.   DOI
11 Odling, N., 1997, Scaling and connectivity of joint system in sandstones from Western Norway. J. Struct Geol., 19, 1257-1271.   DOI   ScienceOn
12 Ramsay, J.G. and Huber, M.I., 1987, The techniques of modern structural geology. Academic Press, 700p.
13 Segall, P., 1984, Formation and growth of extensional fracture sets. Geol. Soc. Am. Bull., 95, 454-462.   DOI   ScienceOn
14 Shibata, K., Uchiumi, S. and Nakagawa, T., 1979, K/Ar age results 1. Bull. Geol. Surv. Japan, 30, 675-686.
15 엄상호, 이동우, 박봉순, 1964, 한국지질도(1:50,000), 포항도폭. 국립지질조사소, 21p.
16 Sohn Y.K., Rhee, C.W. and Sohn, H., 2001, Revised stratigraphy and reinterpretation of the Miocene Pohang basinfills, SE Korea: sequence development in response to tectonic and eustassy in a back-arc basin margin. Sedimentary Geology, 143, 265-285.   DOI   ScienceOn
17 Swanson, M.T., 2006, Late Paleozoic strike-slip faults and related vein array of Cape Elizabeth, Maine. J. Struct. Geol., 28, 456-473.   DOI   ScienceOn
18 박덕원, 이창범, 2010, 강화군 석모도 일대의 선캠브리아기 변성암류 및 중생대 화강암류에서 발달하는 단열계의 분포특성. 암석학회지, 19, 123-139.
19 윤성효, 1988, 포항분지 북부(칠포-월포 일원)에 분포하는 화산암류에 대한 암석학적층서적 연구. 광산지질학회지, 21, 117-129.
20 송윤호, 이창범, 박덕원, 김형찬, 이철우, 이성곤, 이종철, 이병태, 박인화, 이태종, 조병욱, 염병우, 이승구, 이봉주, 기원서, 박노욱, 박영수, 임무택, 현혜자, 손정술, 임형래, 황세호, 오재호, 김세준, 이윤수, 김민규, 박찬, 정용복, 천대성, 김통권, 이진수, 임성근, 2004, 심부 지열에너지 개발 사업. 한국지질자원연구원 연구보고서, 일반-04(연차)-01, 226p.
21 장기홍, 1985, 한국지질론. 대우학술총서 자연과학, 19, 272p.
22 장태우, 김천수, 배대석, 2003, 우리나라 단열구조의 특성. 지질공학회지, 13, 207-225.   과학기술학회마을
23 장태우, 이현우, 채병곤, 서용석, 조용찬, 2007, 일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시. 지질공학회지, 17, 483-494.
24 Cladouhos, T.T. and Marret, R., 1996, Are fault growth and linkage models consistent with power-law distributions of fault lengths?. J. Struct. Geol., 18, 281-293.   DOI   ScienceOn
25 Flodin, E.A. and Aydin, A., 2004, Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada. Geol. Soc. Am. Bull., 116, 42-59.   DOI   ScienceOn
26 박덕원, 2009, 경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 방향성. 암석학회지, 2, 115-135.
27 Fossen, H. and Rornes. A., 1996, Properties of fault populations in the Gullfaks Field, northern North Sea. J. Struct. Geol., 18, 179-190.   DOI   ScienceOn
28 Gall, B.L., Tshoso, G., Dyment, J., Kampunzu, A.B., Jourdan, F., Fraud, G., Bertrant, H., Aubourg, C., and Vtel, W., 2005, The Okavango giant mafic dyke swarm(NE Botswana): its structural significance within the Karoo Large Igneous Province. J. Struct. Geol., 27, 2234-2255.   DOI   ScienceOn
29 김옥준, 윤선, 길영준, 1968, 한국지질도(1:50,000), 청하도폭. 국립지질조사소, 16p.
30 박덕원, 이창범, 2009, 경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 분포특성. 암석학회지, 18, 315-336.