• Title/Summary/Keyword: microbial reduction

Search Result 621, Processing Time 0.029 seconds

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

Eco-friendly remediation and odor control of a contaminated urban stream using beneficial microorganisms (생물증강법을 이용한 도심 오염 소하천의 친환경적 수질정화 및 악취제어)

  • Chang, Jae-Soo;Song, Jikyung;Kim, In-Soo;Yoo, Jangyeon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • Dongchun, one of the representative streams in urban area, is a downstream that is connected to Hogyechun, Bujeonchun, Jeonpochun, Danggamchun, and Gayachun as its upstream. Hogyechun has been mostly covered with concrete structures for decades, causing sewage pollution from the upstream, overflow of the downstream region and other serious pollution that gave rise to many civil complaints from the residents nearby. In this study, we analyzed 3 stations, including control station for water quality and malodor changes of Hogyechun after applying the microbial augmentation (BM-2) for a few months including the rainy season. Amounts (g/h) of DO in the middle site (Middle) and the downstream site (Borim) increased by 1.7 times compared with the upstream site (Chuhae) after augmentation for about 2 months. Amounts (g/h) of COD and $NO_3{^-}N$ decreased by 2 and 1.7 times, respectively, in the middle and downstream sites while SS increased by 7.5 and 22 times in the middle and downstream sites, respectively. Moreover, odor removal efficiencies at the middle and downstream sites were 65% and 19%, respectively, indicating the microbial activity in reduction of malodor in the polluted stream. The dominant microbial species of the sampling sites were Hydrogenophaga caeni, Sphaerotilus natans, Acidovorax radicis, Acidovorax delafieldii, and Cloacibacterium rupense. Densities of the two species Sphaerotilus natans and Acidovorax delafieldii were significantly increased in the middle site after augmentation which possessed potential odor removal and denitrification activity, respectively. Potential pathogens (e.g., Arcobacter cryaerophilus) were also removed from the middle site after the implementation.

The Effect of Ammonia and Sodium Hydroxide Treatment on the Storage and Rumen Microbial Fiber Degradation in Silage of Rice Straw Contaminated Mycotoxin (암모니아 및 가성소다 처리가 Mycotoxin 오염 사료용 볏짚의 사일레지 저장 및 반추위 미생물의 섬유소 분해에 미치는 영향)

  • Sung, Ha Guyn
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This study was conducted to research on the efficacy of chemical treatment as an effective method for reducing mycotoxin in rice straw silage. As a chemical treatment method, ammonia and sodium hydroxid were treated at 4% level of rice straws contaminated with mycotoxin, and the effects of silage storage on fungal toxin reduction, fermentation quality, and fiber digestion were evaluated. Aflatoxin B1, B2, G1, G2 and fumonisin B1, B2 as well as deoxynivalenol were not detected in all experimental groups, and ochratoxin A and zearalenone were detected. Ochratoxin A was detected lower in the chemical treatment than control (41.23 g / kg) (p<0.05). Zearalenone showed lower results in sodium hydroxide treatment (297.44 ㎍ / kg) than control (600.33 ㎍ / kg) and ammonia treatment (376.00 ㎍ / kg) (p<0.05). The pH of rice straw silage was the lowest in ammonia treatment and the highest in sodium hydroxide treatment (p<0.05). The lactic acid contents of control and ammonia treatments were similar, but sodium hydroxide treatment was the lowest (p<0.05). Propionic acid was higher in the control than in the chemical treatments (p<0.05), and showed similar contents in the ammonia and sodium hydroxide treatment. Both the rumen microbial degradation rate of NDF and ADF showed the highest in sodium hydroxide treatment, followed by ammonia treatment, and the control showed the lowest level (p<0.05). Therefore, the results of this study are demonstrated to have a good effect on the treatment of ammonia and sodium hydroxide to reduce the mycotoxins and increase the rumen microbial degradation rate in the rice straw silage. Sodium hydroxide treatment was more effective in reducing mycotoxins and improving fiber degradation rate than ammonia treatment, but it is thought to have an inefficient effect on silage fermentation in rice straw silage.

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

Anti-Porcine Epidemic Diarrhea Virus (PEDV) Activity and Antimicrobial Activities of Artemisia dubia Essential Oil (참쑥(Artemisia dubia) 오일의 돼지 유행성 설사 바이러스(Porcine Epidemic Diarrhea Virus)에 대한 항바이러스 항균활성)

  • Kim, Jong-Im
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.396-402
    • /
    • 2012
  • The chemical composition, anti-porcine epidemic diarrhea virus (PEDV) activity and antimicrobial activity of Artemisia dubia essential oil were evaluated in this study. Fifty eight compounds from A. dubia essential oil were identified through analysis by gas chromatography-mass spectrometry (GC-MS). The major constituents of the oil were camphor (17.18 %), germacrene-D (15.70%), trans (${\beta}-$) racaryophyllene (6.79%), ene thujones (6.57%), 1, 8-cineole (5.94%) and camphene (5.08%). The essential oil was evaluated for antiviral activity against PEDV in Vero cells using a cytopathic effect (CPE) reduction method. The oils actively inhibited PEDV replication with a 50% inhibitory concentration ($IC_{50}$) of 43.7 ${\mu}^3/mL$. The 50% cytotoxicity concentration ($CC_{50}$) of the oils was over 100 ${\mu}/mL$ and the derived therapeutic index was >2.3. Similar analysis of the ribavirin revealed that they have a relatively weaker efficacy when compared to the oils. The antimicrobial activity of the essential oil against 5 microorganisms was evaluated by the disc diffusion method. The essential oil exhibited antimicrobial activity against 5 tested microorganisms with a clear zone of 8-22 mm. Among the tested microorganisms, Streptococcus pyogenes was the most sensitive and Candida albicans the least. Therefore, in can be concluded that essential oils of A. dubia may have interesting applications for microbial control or the control of PEDV-derived diseases.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction (천연 약용식물의 미생물 발효를 통한 장내 메탄 생성 억제 효과 비교 연구)

  • Lee, A-Leum;Park, Hae-Ryoung;Kim, Mi-So;Cho, Sangbuem;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.801-813
    • /
    • 2014
  • A study was conducted to improve the biological activity of two medicinal plants, Eucommia ulmoides Oliv. and Glycyrrhiza uralensis, by fermentation. The biological activity was assessed by determining antibacterial, antioxidant and antimethanogenic properties. Fermentation was achieved by adding the plant materials in MRS broth at 10% (w/v) and different starter cultures at 1% (v/v). Condition for fermentation were incubation temperature of $30^{\circ}C$ and agitation at 150 rpm for 48 h. Six starter cultures, Weissella confusa NJ28 (Genbank accession number KJ914897), Weissella cibaria NJ33 (Genbank accession number KJ914898), Lactobacillus curvatus NJ40 (Genbank accession number KJ914899), Lactobacillus brevis NJ42 (Genbank accession number KJ914900), Lactobacillus plantarum NJ45 (Genbank accession number KJ914901) and Lactobacillus sakei NJ48 (Genbank accession number KJ914902) were used. Antibacterial activity was observed in L. curvatus NJ40 and L. plantarum NJ45 only as opposed to other treatments, including the non-fermented groups, which showed no antibacterial activity. Both plants showed antioxidant activity, although E. ulmoides Oliv. had lower activity than G. uralensis. However, fermentation by all strains significantly improved (p<0.05), antioxidant activity in both plants compared to non-fermented treatment. Six treatments were based on antibacterial activity results, selected for in vitro rumen fermentation; 1) non-fermented E. ulmoides, 2) fermented E. ulmoides NJ40, 3) fermented E. ulmoides NJ45, 4) non-fermented G. uralensis, 5) fermented G. uralensis NJ40, 6) fermented G. uralensis NJ45. A negative control was also added, making a total of 7 treatments for the in vitro experiment. Medicinal plant-based treatments significantly improved (p<0.05) total volatile fatty acid (VFA) concentration. Significant methane reduction per mol of VFA were observed in G. uralensis (p<0.05). Based on the present study, fermentation improves the biological activity of E. ulmoides Oliv. and G. uralensis. Fermented G. uralensis could also be applied as an enteric methane mitigating agent in ruminant animals.