Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria

철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구

  • Published : 2005.02.28

Abstract

In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

철을 이용한 반응벽체 (permeable reactive barrier, PRBs) 기술은 유기 화합물로 오염된 지하수를 환원적 반응에 의해 정화시키는 공법이다. 벽체의 매질로 주로 사용되는 영가 철은 반응이 진행됨에 따라 점차 2가 및 3가 철로 산화되어 제거능이 점차 저감된다. 자연계에 존재하거나 동정된 철 환원 박테리아는 산화된 Fe(III)를 Fe(II)로 환원시키는 능력을 가지고 있으며 이와 같이 환원된 Fe(II)는 반응 표면적을 넓히고 다시 할로겐 유기 화합물을 환원적으로 제거할 수 있도록 한다. 본 연구는 철 환원 박테리아로 순수균인 Shewanella algae BrY에 의한 산화철의 환원 경향을 aqueous phase와 solid phase로 나누어 관찰하고 환원된 철이 TCE 제거에 미치는 영향을 iron(II,III) oxide와 iron(III) oxide를 대상으로 하여 파악하는 것을 목표로 하였다. 박테리아는 배지 내에 존재하는 Fe(III)를 우선적으로 사용하여 Fe(II)로 환원시켰으며 선택성은 떨어지지만 입자상의 산화철 표면에 존재하는 Fe(III)도 환원시켰다. 또한 동량의 산화철이 존재할 때 iron(II,III) oxide에 비해 박테리아가 전자수용체로 사용할 수 있는 Fe(III)가 풍부한 iron(III) oxide의 환원이 더 잘 일어남을 알 수 있었고, 환원된 Fe(II)는 박테리아 또는 다른 철 산화물과 침전을 형성하였으며 TCE와의 반응속도 및 제거 능력을 향상시키는 것으로 판단된다.

Keywords

References

  1. Agrawal, A. and Tratnyek, P. G., 'Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal,' Environ. Sci. Technol., 30, 153 -160(1996) https://doi.org/10.1021/es950211h
  2. Burris, D. R., Campbell, T. J., and Manoranjan, V. S., 'Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System,' Environ. Sci. Technol., 29, 2850 -2855(1995) https://doi.org/10.1021/es00011a022
  3. Furukawa, Y., Kim, J. W., Watkins, J., and Wilkin, R. T., 'Formation of Ferrihydrite and Associated iron Corrosion Products in Permeable Reactive Barriers of Zero-Valent Iron,' Environ. Sci. Technol., 36, 5469-5475 (2002) https://doi.org/10.1021/es025533h
  4. Matheson, L. J. and Tratnyek, P. G., 'Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,' Environ. Sci. Technol., 28, 2045-2053(1994) https://doi.org/10.1021/es00061a012
  5. Cho, H. H. and Park, J. W., 'Reductive Dechlorination of Tetrachloroethylene Using Zero-Valent Iron with Surfactant,' In Chlorinated Solvent and DNAPL remediation: Innovative strategies for subsurface cleanup, ACS symposium series 837(2002)
  6. Cho, H. H., Lee, T., and Park, J. W., 'Iron and Organobentonite for the Reduction and Sorption of Trichloroethylene,' Chemosphere, 58, 103-108(2005) https://doi.org/10.1016/j.chemosphere.2004.09.004
  7. Cho, H. H. and Park, J. W., 'Effect of Coexisting Compounds on the Sorption and Reduction of Trichloroethylene with Iron,' Environm. Toxicol. Chem., 24, 11-16 (2005) https://doi.org/10.1897/04-051R.1
  8. Devlin, J. F., Klausen, J., and Schwarzenbach, R. P., 'Kinetics of Nitroaromatic Reduction on Granular Iron in Recirculating Batch Experiments,' Environ. Sci. Technol., 32, 1941-1947(1998) https://doi.org/10.1021/es970896g
  9. Gandhi, S., Oh, B. T., Schnoor, J. L., and Alvarez, P. J. J., 'Degradation of TCE, Cr(VI), Sulfate and Nitrate Mixtures by Granular Iron in Flow-through Columns under Different Microbial Conditions,' Water Res., 36, 1973-1982(2002) https://doi.org/10.1016/S0043-1354(01)00409-2
  10. Gerlach, R., Cunningham, A. B., and Caccavo, F., 'Dissimilatory Iron-Reducing Bacteria Can Influence the Reduction of Carbon Tetrachloride by Iron Metal,' Environ. Sci. Technol., 34, 2461-2464(2000) https://doi.org/10.1021/es991200h
  11. Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang, L., and Lee, S. Y., 'Performance Evaluation of a Zero-valent Iron Reactive Barrier: Mineralogical characteristics,' Environ. Sci. Technol., 34, 4169-4176(2000) https://doi.org/10.1021/es001005z
  12. Caccavo, F., Blakemore, R. P., and Lovley, D. R., 'A Hydrogen-Oxidizing Fe(III)-Reducing (Microorganism from the Great Bay Estuary, New-Hampshire,' Appl. Environ. Microbiol., 58, 3211- 3216(1996)
  13. Kostka, J. E. and Nealson, K. H., 'Dissolution and Reduction of Magnetite by Bacteria,' Environ. Sci. Technol., 29, 2535-2540(1995) https://doi.org/10.1021/es00010a012
  14. Dong, H., Fredrickson, J. K., Kennedy, D. W., Zachara, J. M., Kukkadapu, R. K., and Onstott, T. C., 'Mineral Transformation Associated with the Microbial Reduction of Magnetite,' Chem. Geol., 169, 299-318(2000) https://doi.org/10.1016/S0009-2541(00)00210-2
  15. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Cappellen, P. V., 'The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters,' Geochemistry, 15, 785-790(2000) https://doi.org/10.1016/S0883-2927(99)00097-9
  16. Johnson, T. L., Schere, M. M., and Tratnyek, P. G., 'Kinetics of Halogenated Organic Compound Degradation by Iron Metal,' Environ. Sci. Technol., 30, 2634-2640 (1996) https://doi.org/10.1021/es9600901
  17. Johnson, T. L., Fish, W., Gorby, Y. A., and Tratnyek, P. G., 'Degradation of Carbon Tetrachloride by Iron Metal: Complexation Effects on the Oxide Surface,' J. Contam. Hydrol., 29, 378-398(1998)
  18. 조현희, 박재우, 'Zero-valent Iron (ZVI)에 의한 TCE 탈염소화 반응에 계면활성제와 자연용존 유기물이 미치는 영향에 관한 연구,' 대한환경공학회지, 24(4), 689-696(2002)