DOI QR코드

DOI QR Code

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode

스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소

  • Kim, Taeyoung (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Sukwon (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Chang, In Seop (Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Hyun Woo (Department of Environmental Engineering, Chonbuk National University) ;
  • Sung, Je Hoon (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Paek, Yee (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Young Hwa (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Jae Kyung (Energy and Environmental Engineering Division National Institute of Agricultural Sciences, Rural Development Administration)
  • 김태영 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 강석원 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장인섭 (광주과학기술원 지구환경공학과) ;
  • 김현우 (전북대학교 환경공학과) ;
  • 성제훈 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 백이 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과)
  • Received : 2017.09.11
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

촉매 코팅하지 않은 탄소전극(graphite felt)을 이용한 미생물연료전지에서 전력 오버슈트 현상이 발생하였으며 환원전위의 손실이 대부분의 전압 감소 원인으로 파악되었다. 이를 해결하고자 백금-탄소 촉매 코팅한 탄소전극과 싸고 고전도성을 지닌 스테인리스강 수세미 전극을 사용하여 전력 오버슈트 현상 극복과 전압손실에 대한 분석을 하였다. 백금-탄소 촉매 코팅한 탄소전극을 환원전극으로 이용한 미생물연료전지에서는 여전히 전력오버슈트가 발생하였지만 스테인리스강 수세미 전극에서는 낮은 환원용액 공급유속에서도 전력 오버슈트가 발생하지 않았으며 29% 가량의 증가된 최대전력밀도 값($23.9A/m^3$)을 얻을 수 있었다. 탄소전극을 사용한 미생물연료전지의 전력 오버슈트는 환원용액의 유입유속을 증가시킴에 따라 해결할 수 있었다. 또한 탄소전극과 스테인리스강 수세미 전극을 이용한 미생물연료전지 모두 유속 증가에 따라 최대전력밀도 값과 최대전류밀도 값이 2-3.5배 가량 증가하였다. 유입유속 증가에 따른 전압손실을 분석한 결과 활성도 손실, 저항 손실, 물질전달 손실 모든 구간에서 미생물연료전지의 환원전위 손실이 감소하였다. 이에 따라 스테인리스강 수세미는 경제성 있고 전력오버슈트 현상을 예방하는 미생물연료전지의 환원전극으로써 좋은 재료이며 만약 환원전극 문제로 인해 전력 오버슈트 현상이 발생한다면 환원조 내부 유동을 증가시키는 것이 이를 해결할 수 있는 좋은 방법이라 판단된다.

Keywords

Acknowledgement

Grant : 유기물 부하에 저항이 있는 중첩형 미생물연료전지 시스템 구축

Supported by : 농촌진흥청

References

  1. Chang, I. S., Moon, H., Bretschger, O., Jang, J. K., Park, H. I., Nealson, K. H. and Kim, B. H., "Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells," J. Microbiol. Biotechnol., 16(2), 163-177(2006).
  2. Liu, H. and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol., 38(14), 4040-4046(2004). https://doi.org/10.1021/es0499344
  3. Martin, E., Tartakovsky, B. and Savadogo, O., "Cathode materials evaluation in microbial fuel cells: a comparison of carbon, $Mn_2O_3,Fe_2O_3$ and platinum materials," Electrochim. Acta, 58, 58-66(2011). https://doi.org/10.1016/j.electacta.2011.08.078
  4. Logan, B. E., Murano, C., Scott, K., Gray, N. D. and Head, I. M., "Electricity generation from cysteine in a microbial fuel cell," Water Res., 39(5), 942-952(2005). https://doi.org/10.1016/j.watres.2004.11.019
  5. Liu, X.-W., Li, W-W. and Yu, H-Q., "Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater," Chem. Soc. Rev., 43(22), 7718-7745(2014). https://doi.org/10.1039/C3CS60130G
  6. Rismani-Yazdi, H., Carver, S. M., and Christy, A. D., Tuovinen O. H., "Cathodic limitations in microbial fuel cells: an overview," J. Power Sources, 180(2), 683-694(2008). https://doi.org/10.1016/j.jpowsour.2008.02.074
  7. Dumas, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L. and Bergel, A., "Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials," Electrochim. Acta, 53(2), 468-473(2007). https://doi.org/10.1016/j.electacta.2007.06.069
  8. Song, Y-C., Woo, J-H. and Yoo, K-S., "Materials for microbial fuel cell: electrodes, separator and current collector," J. Korean Soc. Environ. Eng., 31(9), 693-704(2009).
  9. An, J., Kim, T. and Chang, I. S., "Concurrent Control of Power Overshoot and Voltage Reversal with Series Connection of Parallel-Connected Microbial Fuel Cells," Energy Technol., 4(6), 729-736(2016). https://doi.org/10.1002/ente.201500466
  10. Nien, P-C., Lee, C-Y., Ho, K-C., Adav, S. S., Liu, L., Wang, A., Ren, N. and Lee, D-J., "Power overshoot in two-chambered microbial fuel cell (MFC)," Bioresour. Technol., 102(7), 4742-4746(2011). https://doi.org/10.1016/j.biortech.2010.12.015
  11. Watson, V. J. and Logan, B. E., "Analysis of polarization methods for elimination of power overshoot in microbial fuel cells," Electrochem. Commun., 13(1), 54-56(2011). https://doi.org/10.1016/j.elecom.2010.11.011
  12. Peng, X., Yu, H., Yu, H. and Wang, X., "Lack of anodic capacitance causes power overshoot in microbial fuel cells," Bioresour. Technol., 138, 353-358(2013). https://doi.org/10.1016/j.biortech.2013.03.187
  13. Winfield, J., Ieropoulos, I., Greenman, J. and Dennis, J., "The overshoot phenomenon as a function of internal resistance in microbial fuel cells," Bioelectrochem., 81(1), 22-27(2011). https://doi.org/10.1016/j.bioelechem.2011.01.001
  14. Zhu, X., Tokash, J. C., Hong, Y. and Logan, B. E., "Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials," Bioelectrochem., 90, 30-35(2013). https://doi.org/10.1016/j.bioelechem.2012.10.004
  15. Hong, Y., Call, D. F., Werner, C. M. and Logan, B. E., "Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells," Biosens. Bioelectron., 28(1), 71-76(2011). https://doi.org/10.1016/j.bios.2011.06.045
  16. Li, J., Li, H., Fu, Q., Liao, Q., Zhu, X., Kobayashi, H. Ye, and D., "Voltage reversal causes bioanode corrosion in microbial fuel cell stacks," Int. J. Hydro. Energy, 2017.
  17. He, Z., Huang, Y., Manohar, A. K. and Mansfeld, F., "Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell," Bioelectrochem., 74(1), 78-82(2008). https://doi.org/10.1016/j.bioelechem.2008.07.007
  18. Erable, B., Etcheverry, L. and Bergel, A., "Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment," Electrochem. Commun., 11(3), 619-622(2009). https://doi.org/10.1016/j.elecom.2008.12.058
  19. Rozendal, R. A., Hamelers, H. V. and Buisman, C. J., "Effects of membrane cation transport on pH and microbial fuel cell performance," Environ. Sci. Technol., 40(17), 5206-5211(2006). https://doi.org/10.1021/es060387r
  20. Oh, S. E. and Logan, B. E., "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells," Appl. Microbiol. Biotechnol., 70(2), 162-169(2006). https://doi.org/10.1007/s00253-005-0066-y
  21. Jang J. K., Kim K. M., Byun S., Ryou Y. S., Chang I. S., Kang Y. K. and Kim, Y. H., "Current generation from microbial fuel cell using stainless steel wire as anode electrode," J. Korean Soc. Environ. Eng., 36(11), 753-757(2014). https://doi.org/10.4491/KSEE.2014.36.11.753