• Title/Summary/Keyword: microbial change

Search Result 570, Processing Time 0.037 seconds

Change of Fine Structure of Aliphatic Polyester fiber by strectching

  • 홍기정;박수민
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.04a
    • /
    • pp.328-332
    • /
    • 1997
  • Hot stretching focused on the improvement of properties of poly(L-lactic acid) fiber. Some aliphatic polyesters are biodegradable under microbial attack and the new unique applications are expected. Generally, these materials have a somewhat low melting temperature and low mechanical properties compared with the aromatic polyesters. In this study, melt-spinning of poly(L-lactic acid) was conducted. We investigated effects of the stretching and the molecular orientation of aliphatic polyester fibers on the change of fine-structure. Glass transition temperature, molecular orientation and crystallinity increased according to the increase of stretching ratio.

  • PDF

Antitumoral Compound, MCS-202, an Effector on Proliferation and Morphology of Human Breast Tumor Cell Line, MCF-7 (인체유암세포주 MCF-7의 형태변화와 증식에 영향을 주는 항암활성물질, MCS-202)

  • 이성우;김세은;김항섭;김환묵;이정준;김영호
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.594-599
    • /
    • 1993
  • In the course of screening for microbial metabolites employing human cancer cell line, we identified a mycelial extract of Streptomyces sp. 1365, which are effective on growth inhibition and morphological change of MCF-7, human breasr cancer cell line. By repeased column chromatography and recrystallization process, yellow needle crystals were obtained as an active compound and identified as resistomycin by spectral analysis.

  • PDF

Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs (혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화)

  • Jun, Yoon-Sun;Lee, Kwan-Yong;Cho, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1239-1244
    • /
    • 2008
  • In this study, PCR-DGGE was conducted to investigate the variations of microbial community according to pH conditions from pH 3 to pH 10 during anaerobic fermentation process of hydrogen production. Maximum hydrogen yield was 1.8 mol $H_2$/mol substrate at pH 5. The microbial growth rate was not proportional to the hydrogen production rate at each pH. Variations of microbial community was observed at each condition from PCR-DGGE experiment of 16s rDNA. Klebsiella was main species of the microbial community. Streptococcus and Clostridium were mainly contributed for hydrogen production.

Studies on Safety of Ganoderma lucidum (영지(靈芝)의 안전성(安全性)에 관한 연구(硏究))

  • Kim, Myung-Ja;Kim, Ha-Won;Lee, Young-Soon;Shim, Mi-Ja;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.14 no.1
    • /
    • pp.49-59
    • /
    • 1986
  • To examine safety of Ganoderma lucidum, it was extracted with hot water (Fraction A). After the extract was dialyzed and freeze-dried, a polysaccharide fraction (Fraction B) was obtained and examined for acute and subacute toxicity. In the acute toxicity tests of Fr. A and Fr. B on mice, both agents did not show any serious and lethal effects. The results showed that 50% lethal doses were higher than 5,000 mg/kg. The experiments of oral administration of Fr. A (5,000 mg/kg) to mice for 30 days showed that there were no changes in body weight, hematological features and organ weight.

  • PDF

Microbial Community Changes in the Soil of Plastic Film House as Affected by Anaerobic Fermentation of Rice Bran or Wheat Bran (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 미생물상에 미치는 영향)

  • Kim, Hong-Lim;Weon, Hang-Yeon;Sohn, Bo-Kyun;Choi, Young-Hah;Kwack, Young-Bum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.341-347
    • /
    • 2009
  • Soil microbial community has been changed after the treatment of anaerobic fermentation using wheat bran or rice bran was applied to the soil. In the dilution plate technique, the number of anaerobic bacteria and fungi was higher in rice bran-treated soil than in non and wheat bran-treated soil, but of yeast was higher in wheat bran-treated soil than in non and rice bran-treated soil. Specially, the fungi were not detected in the wheat bran-treated soil. Identified by 16S rDNA sequencing, the number of aerobic bacteria was similar in all treatments, the dominant bacteria was the genus Bacillus. In the phospholipid fatty acid (PLFA) technique, both Gram-positive and Gram-negative bacteria change slightly in all treatments for 20 days of fermentation process but, after 20day, increased rapidly in wheat or rice bran-treated soil. In conclusion, the microbial communities structure was dramatically changed after the treatment of wheat or rice bran to soil.

Characteristics of Microbial Arsenic Oxidation under Denitrification Environment (미생물에 의한 탈질 과정 동안의 비소 동시 산화 특성 평가)

  • Oh, Seolran;Kim, Dong-Hun;Moon, Hee Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, groundwater contamination by mixed occurrence of arsenic (As) and nitrate ($NO_3{^-}$) has been a serious environmental issue all around world. In this study, we investigated the microbial As(III) oxidation characteristic under denitrification process to examine the feasibility of the microbial consortia in wetland sediment to simultaneously treat these two contaminants. The detail objectives of this study were to investigate the effects of $NO_3{^-}$ on the oxidation of As(III) in anaerobic environments and observe the microbial community change during the As oxidation under denitrification process. Results showed that the As(III) was completely and simultaneously oxidized to As(V) under denitrification process, however, it occurred to a much less extent in the absence of sediment or $NO_3{^-}$. In addition, the significant increase of As(III) oxidation rate in the presence of $NO_3{^-}$ suggested the potential of As oxidation under denitrification by indigenous microorganisms in wetland sediment. Genera Pseudogulbenkiania, and Flavisolibacter were identified as predominant microbial species driving the redox process. Conclusively, this study can provide useful information on As(III) oxidation under denitrifying environment and contribute to develop an effective technology for simultaneous removal of As(III) and $NO_3{^-}$ in groundwater.

Effect of Platycodon grandiflorum Fermentation with Salt on Fermentation Characteristics, Microbial Change and Anti-obesity Activity (소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가)

  • Shin, Na Rae;Lim, Sokyoung;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2018
  • Objectives: This study investigated the effect on microbial ecology, fermentation characteristics and anti-obesity of Platycodon grandiflorum (PG) fermentation with salt. Methods: PG was fermented for four weeks with 2.5% salt and the characteristics of fermented PG were performed by measuring pH, total sugar content, viable bacteria number and microbial profiling. Also, we measured total polyphenol, flavonoid and the percent of inhibition of lipase activity and lipid accumulation. Results: Salt added to PG for fermentation had an effect on pH, total sugar, total and the number of lactic acid bacteria. Total sugar and pH were reduced and number of total and lactic acid bacteria were increased after fermentation. The majority of bacteria for fermentation were Lactobacillus plantarum, Leuconostoc psedomesenteroides and Lactococcus lactis subspecies lactis regardless of salt addition. However, microbial compositions were altered by added salt and additional bacteria including Weissella koreensis, W. viridescens, Lactobacillus sakei and Lactobacillus cuvatus were found in fermented PG with salt. Total flavonoid was increased in fermented PG and lipid accumulation on HepG2 cells treated with fermented PG was reduced regardless of salt addition. Moreover, fermented PG without salt suppressed lipase activity. Conclusions: Addition of salt for PG fermentation had influence on fermentation characteristics including pH and sugar content as well as number of bacteria and microbial composition. In addition, fermented PG showed anti-obesity effect by increasing flavonoid content and inhibition of lipase activity and lipid accumulation.

Long-term effects of chlorhexidine varnish treatment on microbial changes of dental plaque in orthodontic patients with fixed appliances (Chlorhexidine varnish 처치 후 고정식 교정장치 장착 환자의 치태내 균주 변화 양상에 대한 장기간 관찰 연구)

  • Chang, Young-Il;Yang, Won-Sik;Nahm, Dong-Seok;Kim, Tae-Woo;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.30 no.3 s.80
    • /
    • pp.335-342
    • /
    • 2000
  • The authors observed the long term effects of chlorhexidine varnish treatment on microbial change of dental plaque in orthodontic patients with fixed appliances. The initial sample was 100 patients who were arranged to be treated with fixed orthodontic appliances. The final sample consisted of 21 patients who could be traced for 32 weeks after application of fixed orthodontic appliances. They were classified into the experimental group (12 patients) and the control group (9 patients). The experimental group was treated with chlorhexidine varnish once a week for 4 weeks before application of fixed orthodontic appliance. The control group was not treated with chlorhexidine varnish before application of fixed orthodontic appliance. The experimental group was treated once more after 20 weeks. The microbial changes of dental plaque were analysed by indirect immunofluorescence technique at pre-treatment, post-treatment 4, 8, 20, and 32 weeks. The results were as follows. 1. In the experimental group, streptococus mutans was significantly suppressed during experimental period. (p<0.01) But, in the control group, streptococcus mutans was significantly increased after placement of fixed orthodontic appliances during experiment period. (p<0.05) 2. Streptococcus sanguis, Streptococcus mitis, Actinomyces viscosus, md Actinomyces naeslundii did not show significant change between the experimental and the control group during experiment period. So, if we treat the orthodontic patients with chlorhexidine varnish before application of fixed appliances, we may suppress the major cariogenic bacteria, Streptococcus mutans, selectively for long period.

  • PDF

The Functional Effects of Anti-microbial Activity and Anti-inflammatory of Seaweed polysaccharide Extracts (해조 다당류 추출물의 항균성 및 항염증 기능성평가)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.161-169
    • /
    • 2018
  • This study aimed to evaluate seaweed polysaccharide extracts as a cosmetic material. To assess anti-microbial efficacy, Staphylococcus aureus (S. aureus) was treated with seaweed polysaccharide extracts and zones of inhibition were measured. In addition, the anti-inflammatory effect was confirmed in RAW 264.7cells, and seaweed polysaccharide extracts was applied to the dorsal skin of Sprague-Dawley (SD) rats to evaluate single-dose toxicity. As a results, seaweed polysaccharide extracts did not exhibit cytotoxicity at concentrations up to $1,000{\mu}g/mL$ in skin fibroblasts. Furthermore, when S. aureus was treated with 1% seaweed polysaccharide extracts, clear zones of $1.52{\pm}0.34cm$ formed, confirming sufficient anti-microbial activity. When RAW 264.7 cells were treated with seaweed polysaccharide extracts extract, nitric oxide (NO) production decreased in a concentration-dependent manner and the production of inflammation-related cytokines, such as interleukin 1 beta ($IL1{\beta}$), tumor necrosis factor alpha ($TNF{\alpha}$), and prostaglandin E2(PGE2), decreased. When seaweed polysaccharide extracts extract was applied at various concentrations to rats, symptoms did not change for more than 14 d, and there was no change in body or organ weights. In conclusion we found that seaweed polysaccharide extracts is not cytotoxic and has anti-microbial and anti-inflammatory effects. Therefore, it is suitable for use as a cosmetic material.

Seasonal Changed of Microbial Population in the Field Soil (계절에 따른 토양중 미생물의 밀도 변화)

  • Park, Dong-Jin;Lee, Sang-Hwa;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.144-148
    • /
    • 1998
  • Soil microorganisms including bacteria, fungi, and actinomycetes were seasonally isolated at depths (0.5~2, $10{\pm}1$, $50{\pm}1cm$) of field. The frequency of microbial isolates was employed for the determination of microbial population (CFU/g dry soil) and distribution ratio (%) in soil. Both bacteria (24-fold) and actinomycetes (7-fold) exhibited the biggest change at the depth of $50{\pm}1cm$, whereas fungi showed the maximum (13-fold) at $10{\pm}1cm$. On the whole, the bacterial population was high in spring soil, fungi in winter, and actinomycetes in autumn. Soil microorganisms also exhibited the seasonal variation on their distribution ratio (%). The maximum distribution ratio (85.7%) of bacteria was observed at the depth of $50{\pm}1cm$ in spring, whereas bacteria showed the minimum (35.2%) at the depth of $10{\pm}1cm$ in spring. The maximum distribution ratio (23.0%) of fungi was found at the depth of $50{\pm}1cm$ in spring, whereas its minimum (0.5%) at the depth of $10{\pm}1cm$ in spring. Actinomycetes exhibited the maximum distribution ratio (45.2%) at the depth of $10{\pm}1cm$ in spring, whereas its minimum (12.2%) was showed at the depth of $50{\pm}1cm$ in spring.

  • PDF