Browse > Article
http://dx.doi.org/10.7857/JSGE.2019.24.4.001

Characteristics of Microbial Arsenic Oxidation under Denitrification Environment  

Oh, Seolran (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Kim, Dong-Hun (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Moon, Hee Sun (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Publication Information
Journal of Soil and Groundwater Environment / v.24, no.4, 2019 , pp. 1-10 More about this Journal
Abstract
Recently, groundwater contamination by mixed occurrence of arsenic (As) and nitrate ($NO_3{^-}$) has been a serious environmental issue all around world. In this study, we investigated the microbial As(III) oxidation characteristic under denitrification process to examine the feasibility of the microbial consortia in wetland sediment to simultaneously treat these two contaminants. The detail objectives of this study were to investigate the effects of $NO_3{^-}$ on the oxidation of As(III) in anaerobic environments and observe the microbial community change during the As oxidation under denitrification process. Results showed that the As(III) was completely and simultaneously oxidized to As(V) under denitrification process, however, it occurred to a much less extent in the absence of sediment or $NO_3{^-}$. In addition, the significant increase of As(III) oxidation rate in the presence of $NO_3{^-}$ suggested the potential of As oxidation under denitrification by indigenous microorganisms in wetland sediment. Genera Pseudogulbenkiania, and Flavisolibacter were identified as predominant microbial species driving the redox process. Conclusively, this study can provide useful information on As(III) oxidation under denitrifying environment and contribute to develop an effective technology for simultaneous removal of As(III) and $NO_3{^-}$ in groundwater.
Keywords
Groundwater; Arsenic oxidation; Nitrate; Microorganism; Denitrification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lin, Y.-F., Jing, S.-R., Wang, T.-W., and Lee, D.-Y., 2002, Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands, Environ. Pollut., 119, 413-420.   DOI
2 Liu, C.-W., Lin, K.-H., and Kuo, Y.-M., 2003, Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, Sci. Total Environ., 313, 77-89.   DOI
3 Min, J., Boulos, L., Brown, J., Cornwell, D., Gouellec, Y., Coppola, E., Baxley, J., Rine, J., Herring, J., and Vural, N., 2006, Innovative Alternatives to Minimize Arsenic, Perchlorate, and Nitrate Residuals, Water Environment Research Foundation, Denver, CO.
4 Mohapatra, D., Mishra, D., Chaudhury, G.R., and Das, R.P., 2007, Arsenic adsorption mechanism on clay minerals and its dependence on temperature, Korean J. Chem. Eng., 24, 426-430.   DOI
5 Nerenberg, R. and Rittmann, B., 2004, Hydrogen-based, hollowfiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants, Water Sci. Technol., 49, 223-230.   DOI
6 Nguyen, V.K., Tran, H.T., Park, Y., Yu, J., and Lee, T., 2017, Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor, J. Ind. Microbiol. Biotechnol., 44, 857-868.   DOI
7 Okereke, A. and Montville, T.J., 1992, Nisin dissipates the proton motive force of the obligate anaerobe Clostridium sporogenes PA 3679, Appl. Environ. Microbiol., 58, 2463-2467.   DOI
8 Osborne, F. and Ehrlich, H., 1976, Oxidation of arsenite by a soil isolate of Alcaligenes, J. Appl. Bacteriol., 41, 295-305.   DOI
9 Philips, S. and Taylor, M.L., 1976, Oxidation of arsenite to arsenate by Alcaligenes faecalis, Appl. Environ. Microbiol., 32, 392-399.   DOI
10 Rhine, E.D., Ni Chadhain, S.M., Zylstra, G.J., and Young, L.Y., 2007, The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers, Biochem. Biophys. Res. Commun., 354, 662-667.   DOI
11 Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies, Appl. Environ. Microbiol., 66, 92-97.   DOI
12 Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M., 2000, A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies, Appl. Environ. Microbiol., 66, 92-97.   DOI
13 Shakya, A.K. and Ghosh, P.K., 2018, Simultaneous removal of arsenic and nitrate in absence of iron in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time, J. Clean Prod., 186, 304-312.   DOI
14 Sharma, V.K. and Sohn, M., 2009, Aquatic arsenic: toxicity, speciation, transformations, and remediation, Environ Int, 35, 743-759.   DOI
15 Shin, K.-H. and Cha, D.K., 2008, Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72, 257-262.   DOI
16 Silver, S. and Phung, L.T., 2005, Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic, Appl. Environ. Microbiol., 71, 599-608.   DOI
17 Upadhyaya, G., Jackson, J., Clancy, T.M., Hyun, S.P., Brown, J., Hayes, K.F., and Raskin, L., 2010, Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixedbed bioreactor system, Water Res., 44, 4958-4969.   DOI
18 Xiu, W., Guo, H., Shen, J., Liu, S., Ding, S., Hou, W., Ma, J., and Dong, H., 2016, Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002, Environ. Sci. Technol., 50, 6449-6458.   DOI
19 Zahid, A., Hassan, M.Q., Balke, K.-D., Flegr, M., and Clark, D.W., 2008, Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh, Environ. Geol., 54, 1247-1260.   DOI
20 Xie, Z., Wang, J., Wei, X., Li, F., Chen, M., Wang, J., and Gao, B., 2018, Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China, Sci. Total Environ., 644, 382-388.   DOI
21 Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., and Boeckx, P., 2009, Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater, Water Res., 43, 1159-1170.   DOI
22 Zhang, J., Zhao, S., Xu, Y., Zhou, W., Huang, K., Tang, Z., and Zhao, F.J., 2017, Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils, Environ. Sci. Technol., 51, 4377-4386.   DOI
23 Zhang, Y. and Angelidaki, I., 2013, A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC), Water Res., 47, 1827-1836.   DOI
24 Zou, Q., An, W., Wu, C., Li, W., Fu, A., Xiao, R., Chen, H., and Xue, S., 2018, Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition, Environ. Chem. Lett., 16, 615-622.   DOI
25 Benkovitz, C.M., Scholtz, M.T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E.C., Spiro, P.A., Logan, J.A., and Graedel, T., 1996, Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res.-Atmos., 101, 29239-29253.   DOI
26 Ahn, J.S., Ko, K.-S., Lee, J.-S., and Kim, J.-Y., 2005, Characteristics of natural arsenic contamination in groundwater and its occurrences, Econ. Environ. Geol., 38, 547-561.
27 Bahar, M.M., Megharaj, M., and Naidu, R., 2013, Bioremediation of arsenic-contaminated water: Recent advances and future prospects, Water Air Soil Pollut., 224, 1722.   DOI
28 Bazylinski, D.A. and Blakemore, R.P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol., 46, 1118-1124.   DOI
29 Bulut, G., Yenial, U., Emiroglu, E., and Sirkeci, A.A., 2014, Arsenic removal from aqueous solution using pyrite, J. Clean Prod., 84, 526-532.   DOI
30 Chatterjee, S. and De, S., 2017, Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane, Sep. Purif. Technol., 179, 357-368.   DOI
31 Das, S., Liu, C.-C., Jean, J.-S., Lee, C.-C., and Yang, H.-J., 2016, Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments, J. Hazard. Mater., 310, 11-19.   DOI
32 Dong, L., Zinin, P.V., Cowen, J.P., and Ming, L.C., 2009, Iron coated pottery granules for arsenic removal from drinking water, J. Hazard. Mater., 168, 626-632.   DOI
33 Gu, Y., Van Nostrand, J.D., Wu, L., He, Z., Qin, Y., Zhao, F.-J., and Zhou, J., 2017, Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations, PloS one, 12, e0176696.   DOI
34 Fytianos, K. and Christophoridis, C., 2004, Nitrate, Arsenic and Chloride Pollution of Drinking Water in Northern Greece. Elaboration by Applying GIS, Environ. Monit. Assess., 93, 55-67.   DOI
35 Ghurye, G.L., Clifford, D.A., and Tripp, A.R., 1999, Combined arsenic and nitrate removal by ion exchange, J. Am. Water Work Assoc., 91, 85-96.
36 Goldberg, S., 2002, Competitive adsorption of arsenate and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J., 66, 413-421.   DOI
37 Kim, G.B., Choi, D.H., Yoon, P.S., and Kim, K.Y., 2010, Trends of groundwater quality in the areas with a high possibility of pollution, J Korea Geo-Environ Soc, 11, 5-16.
38 Hoeft, S.E., Lucas, F.o., Hollibaugh, J.T., and Oremland, R.S., 2002, Characterization of microbial arsenate reduction in the anoxic bottom waters of mono lake, California, Geomicrobiol. J., 19, 23-40.   DOI
39 Li, B., Deng, C., Zhang, D., Pan, X., Al-misned, F.A., and Mortuza, M.G., 2016, Bioremediation of Nitrate- and Arsenic-Contaminated Groundwater Using Nitrate-Dependent Fe(II) Oxidizing Clostridiumsp. Strain pxl2, Geomicrobiol. J., 33, 185-193.   DOI
40 Li, B., Pan, X., Zhang, D., Lee, D.-J., Al-Misned, F. A., and Mortuza, M.G., 2015, Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1 - a potential candidate for simultaneous removal of As and nitrate from groundwater, Ecol. Eng., 77, 196-201.   DOI