Change of Microbial Communities in Fermentative Hydrogen Production at Difference Cultivation pHs

혐기성 수소생산 시 운전 pH 변화에 따른 미생물의 군집 변화

  • Jun, Yoon-Sun (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Kwan-Yong (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Cho, Yoon-A (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Technology)
  • 전윤선 (서울산업대학교 환경공학과) ;
  • 이관용 (서울산업대학교 환경공학과) ;
  • 조윤아 (서울산업대학교 환경공학과) ;
  • 이태진 (서울산업대학교 환경공학과)
  • Published : 2008.12.31

Abstract

In this study, PCR-DGGE was conducted to investigate the variations of microbial community according to pH conditions from pH 3 to pH 10 during anaerobic fermentation process of hydrogen production. Maximum hydrogen yield was 1.8 mol $H_2$/mol substrate at pH 5. The microbial growth rate was not proportional to the hydrogen production rate at each pH. Variations of microbial community was observed at each condition from PCR-DGGE experiment of 16s rDNA. Klebsiella was main species of the microbial community. Streptococcus and Clostridium were mainly contributed for hydrogen production.

본 연구는 혐기성 발효에 의한 수소 생산 시 pH가 3에서 10까지 단계적으로 변화되는 조건에서 미생물의 군집 변화를 살펴보기 위해 PCR-DGGE를 실시하였다. 최대 수소생산 수율은 pH 5에서 1.8 mol $H_2$/mol substrate로 측정 되었으며, 각 pH에서 미생물의 성장량과 수소생산효율의 비례적 상관관계가 나타나지 않았다. 각 pH에서 채취된 미생물의 16S rDNA을 target으로 한 PCRDGGE를 수행한 결과, pH 조건에 따라 미생물의 군집 조성에 변화가 있음을 확인할 수 있었다. 미생물 종의 대부분은 Klebsiella 속으로 규명되었으며 Streptococcus 속과 Clostridium 속 미생물이 수소생산 효율에 많은 영향을 미치는 것으로 판단되었다.

Keywords

References

  1. Zaborsky, O. R., "Biohydrogen," Plenum Press, Newyork, pp. 10-18(1998)
  2. Levin, D. B., Pitt, L., and Love, M., "Biohydrogen production: prospects and limitations to practical application," Int. J. Hydrogen Energy, 29, 173-185(2004) https://doi.org/10.1016/S0360-3199(03)00094-6
  3. Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T., "Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes," Water Sci. Technol., 41(3), 25-32(2000)
  4. Heyndrix, M., De Vos, P., Thibau, B., Stevens, P., and JI De Ley, "Effect of various external factorson the fermentative production of hydrogen gas from glucoes by Clostridium butyricum strains in batch culture system," Appl. Microbiol, 9, 163-168(1987) https://doi.org/10.1016/S0723-2020(87)80072-3
  5. Van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M., and Breau, A. M., "Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture," Appl. Microbiol. Biotechnol., 23, 21-26(1985) https://doi.org/10.1007/BF02660113
  6. Chen, X., Sun, Y., Xiu, Z., Li, X., Zhang, D., "Stoichiometric analysis of biological hydrogen production by fermentative bacteria," Int. J. Hydrogen Energy, 31, 539-549(2006) https://doi.org/10.1016/j.ijhydene.2005.03.013
  7. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y., "Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora," J. Bioscience and Bioengineering, 92(4), 397-400(2001) https://doi.org/10.1263/jbb.92.397
  8. Vreas, L., Forney, L., Daae, F. L., and Torsvik, V., "Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA," Appl. Environ. Microbiol., 63(9), 3367-3373(1997)
  9. Hollibaugh, J. T., Bano, N., and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002) https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  10. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masaharu Ishii, and Yasuo Igarashi, "Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter", J. Bioscience and Bioengineering, 91(2), 159-165(2001) https://doi.org/10.1016/S1389-1723(01)80059-1
  11. Logan, B. E., OH, S. E., Kim, I. S., Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36, 2530-2535(2002) https://doi.org/10.1021/es015783i
  12. Fang, H. H. P., and H. Liu, "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, 87-93(2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  13. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, 695-699(2003) https://doi.org/10.1016/S1093-0191(02)00035-7
  14. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., "Colorimetric method for determination of sugars and related substances," Anal. Chem., 28(3), 350-356(1956) https://doi.org/10.1021/ac60111a017
  15. Minnan, L., Jinli, H., Xuijuan, W., Jinzao, C., Chuannan, L., Fengzhang, Z., Liangshu, X., "Isolation and characterization of a high H2-Producing strain Klebsiella oxytoca HP1 from a hot spring," Res. Microbiol., 156, 76-81 (2005) https://doi.org/10.1016/j.resmic.2004.08.004
  16. Nguyen, T. A. D., Kim, Y. P., Kim, M. S., Oh, Y. K., Sim, S. J., "Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation," Int. J. Hydrogen Energy (accepted), (2007)
  17. Hung, C. H., Cheng, C. H., Cheng, L. H., Liang, C. M., Lin, C. Y., "Application of Clrostridium-specific PCR primers on the analysis of dark fermentation hydrogenproducing bacterial community," Int. J. Hydrogen Energy (2007)
  18. Auch, A. F., Henz, S. R., Holland, B. R., and Goker, M., "Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences," BioMed Central Ltd.(2006)
  19. Felgenstein, J., "Confidence limits on phylogenetics: an approach using the bootstrap," Evolution, 39, 783-791 (1985) https://doi.org/10.2307/2408678
  20. Kimura, M., "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences," J. Mol. Evol., 16, 111-120 (1980) https://doi.org/10.1007/BF01731581
  21. Saitou, N., Nei, M., "The neighbour-joining method: a new method for constructing phylogenetic trees," Mol. Biol. Evol., 4, 406-425(1987)
  22. Prescott, Harley, Klein, "Microbiology," Mc Graw Hill Higher Education, pp. 412-413(2003)