• Title/Summary/Keyword: microalgal culture

Search Result 68, Processing Time 0.036 seconds

Effects of pH on the growth, total nitrogen, total phosphorus and organic compound removal in heterotrophic culture of Chlorella sorokiniana applied wastewater treatment (pH와 탄소원이 Chlorella sorokiniana의 heterotrophic 배양 및 하폐수고도처리능에 미치는 영향)

  • Park, Jeong-Eun;Cho, Yong-Beom;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.703-709
    • /
    • 2013
  • Among many microalgae cultivation types, heterotrophic culture with low cost carbon sources and energy saving culture method is crucial. A result of estimating the effects of pH on wastewater treatment using heterotrophic growing microalgae Chlorella sorokiniana shows that there was no difference in microalgae growth amount and nitrogen, phosphorus removal rate by wide range of pH(5 ~ 9). From pH 5 to 9, total nitrogen, phosphorous and glucose removal rates were 10.5 mg-N/L/d, 2 mg-P/L/d, 800 ~ 1000 mg/L respectively. This study reveals that C. sorokiniana cannot metabolite glycerol heterotrophically, however, glucose and acetate were proper carbon sources for growth and T-N, T-P and TOC removal. This research highlights the potential of heterotrophic microalgal growth with wastewater treatment plant with wide range of pH and carbon sources.

Optimum Culture Condition on Four Species of Microalgae used as Live Food for Seedling Production of Bivalve (이매패류 먹이생물로 이용되는 미세조류 4종의 적정 배양환경조건)

  • Min, Byeong-Hee;Hur, Sung Bum
    • The Korean Journal of Malacology
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In order to investigate the live food value of microalgae for efficacious rearing of larvae and spats of bivalve, we studied growth rates of four microalgal species (Isochrysis galbana, Pavlova lutheri, Chaetoceros simplex, Tetraselmis tetrathele) cultured in different environmental conditions. These include changes in temperatures (20, 25, 30 and $35^{\circ}C$), salinities (20, 25, 30 and 33 psu) and light intensities (60, 100 and $140{\mu}mol\;m^{-2}s^{-1}$). The growth rate of I. galbana was faster at $25^{\circ}C$ than that of $20^{\circ}C$. At $25^{\circ}C$ the highest growth rate of I. galbana was observed at 33 psu (0.413) and the lowest at 20 psu (0.368) in 10 days of culture (P < 0.05). The growth rate of I. galbana was lower at 25 psu (0.383) than that of 30 psu and higher than that of 20 psu (P < 0.05). Similar temperature and salinity-dependent changes were also found in P. lutheri and T. tetrathele. C. simplex showed faster growth rate at $30^{\circ}C$ than that of $25^{\circ}C$. The highest growth rate of C. simplex was observed at 33 psu (0.428) and the lowest at 20 psu (0.389) in 10 days of culture (P < 0.05). Upon exposure to the light with different intensities, all four microalgal species showed a significantly faster growth rate at $140{\mu}mol\;m^{-2}s^{-1}$ than at $100{\mu}mol\;m^{-2}s^{-1}$ (P < 0.05).

Microalgae Cultivation Using LED Light (LED광원을 활용한 미세조류의 배양)

  • Kim, Dae Geun;Choi, Yoon-E
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • Microalgae have been considered as a promising microorganism in the field of bio-industry due to their abilities to fix carbon dioxide as well as biosynthesize valuable secondary metabolites. Of many lighting sources for microalgal cultivation, LED (Lighting Emitting Diode) has been emerged as the appropriate choice with multiple advantages over the conventional bulbs. However, it is only in recent years that we have witnessed the possibility of application of LED into microalgae cultivation system. LED will serve as an evolutionary lighting source for microalgae cultivation system and open the frontier for integrative bio-industries. In this paper, we present the comprehensive review on the recent trends of LED applications into microalgal biotechnology.

Optimum Culture Conditions for the Growth of Spirulina platensis NIES 39 (Spirulina platensis NIES 39의 성장을 위한 최적배양조건)

  • Kim, Young Min;Kim, Mi-Ryung;Kwon, Tae Ho;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.285-289
    • /
    • 2009
  • Recently, as the interest in the accelerated global warming and the food shortage problem is increased, the concerns for microalgae as photosynthetic microorganisms are also increased. Specially, photosynthetic microalgae, Spriulina platensis have been an attractive source for $CO_2$ gas fixations and for a vast array of valuable nutritious compounds. In this paper, to culture the microalgal Spirulina platensis NIES 39 in a batch culture with high mass, optimal conditions for the culture temperature, initial pH, light intensity and concentration of carbon and nitrogen, were tested. At the most favorable culture condition, $35^{\circ}C$, initial pH 9.5, 4500 lux and carbon and nitrogen concentration of 16.8 g/L $NaHCO_3$ and 2.5 g/L $NaNO_3$, the excellent yields of 2.10 g/L biomass and 29.53 mg/L chlorophyll were obtained.

Insertional mutations exhibiting high cell-culture density HCD phenotypes are enriched through continuous subcultures in Chlamydomonas reinhardtii

  • Thung, Leena;He, Jing;Zhu, Qingling;Xu, Zhenyu;Liu, Jianhua;Chow, Yvonne
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.127-141
    • /
    • 2018
  • Low efficiency in microalgal biomass production was largely attributed to the low density of algal cell cultures. Though mutations that reduced the level of chlorophyll or pigment content increased efficiency of photon usage and thus the cell-culture density under high-illumination growth conditions (e.g., >$500{\mu}mol\;photon\;m^{-2}\;s^{-1}$), it was unclear whether algae could increase cell-culture density under low-illumination conditions (e.g., ${\sim}50{\mu}mol\;photon\;m^{-2}\;s^{-1}$). To address this question, we performed forward genetic screening in Chlamydomonas reinhardtii. A pool of >1,000 insertional mutants was constructed and subjected to continuous subcultures in shaking flasks under low-illumination conditions. Complexity of restriction fragment length polymorphism (RFLP) pattern in cultures indicated the degree of heterogeneity of mutant populations. We showed that the levels of RFLP complexity decreased when cycles of subculture increased, suggesting that cultures were gradually populated by high cell-culture density (HCD) strains. Analysis of the 3 isolated HCD mutants after 30 cycles of subcultures confirmed that their maximal biomass production was 50-100% higher than that of wild type under low-illumination. Furthermore, levels of chlorophyll content in HCD mutant strains were similar to that of wild type. Inverse polymerase chain reaction analysis identified the locus of insertion in two of three HCD strains. Molecular and transcriptomic analyses suggested that two HCD mutants were a result of the gain-of-function phenotype, both linking to the abnormality of mitochondrial functions. Taken together, our results demonstrate that HCD strains can be obtained through continuous subcultures under low illumination conditions.

Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions

  • Seong-Joo Hong;Kyung June Yim;Young-Jin Ryu;Choul-Gyun Lee;Hyun-Jin Jang;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.260-267
    • /
    • 2023
  • In this study, we sought to improve lutein and zeaxanthin production in Mychonastes sp. 247 and investigated the effect of environmental factors on lutein and zeaxanthin productivity in Mychonastes sp. The basic medium selection and N:P ratio were adjusted to maximize cell growth in one-stage culture, and lutein and zeaxanthin production conditions were optimized using a central composite design for two-stage culture. The maximum lutein production was observed at a light intensity of 60 μE/m2/s and salinity of 0.49%, and the maximum zeaxanthin production was observed at a light intensity of 532 μE/m2/s and salinity of 0.78%. Lutein and zeaxanthin production in the optimized medium increased by up to 2 and 2.6 folds, respectively, compared to that in the basic medium. Based on these results, we concluded that the optimal conditions for lutein and zeaxanthin production are different and that optimization of light intensity and culture salinity conditions may help increase carotenoid production. This study presents a useful and potential strategy for optimizing microalgal culture conditions to improve the productivity of lutein and zeaxanthin, which has applications in the functional food field.

Potential Use of Microalgae Scenedesmus acuminatus for Tertiary Treatment of Animal Wastewater (축산폐수 고도처리를 위한 미세조류 Scenedesmus acuminatus의 이용 가능성)

  • Park, Ki-Young;Lim, Byung-Ran;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • The green algae Scenedesmus acuminatus was cultured in different media: animal wastewater and an artificial culture medium in order to evaluate potential use for tertiary treatment. The experiments were conducted with air flowrate 1~2 L/min at $28{\sim}30^{\circ}C$. The nitrogen and phosphorus showed very similar removal efficiencies (68~77 % and 69~80 % for nitrogen and phosphorus respectively). The optimal fed period was estimated as three days in the semi-continuous experiment. The effects of $CO_2$ (4.5 %) injection on nutrient uptake from animal wastewater (biological treatment effluent) were compared to an air injection under the same conditions of light and photoperiod. The uptake rates of nutrient with air injection were observed 0.009 gN/gChl-a/day, 0.028 gN/gChl-a/day and T-P 0.003 gP/gChl-a/day for nitrate, total nitrogen and phosphorus respectively. The rates were enhanced by addition of $CO_2$ to 0.026 gN/gChl-a/day, 0.076 gN/gChl-a/day and T-P 0.018 gP/gChl-a/day. This study establishes that $CO_2$ addition during nutrient deprivation of microalgal cells may accelerate tertiary wastewater treatment.

The Behavior of a $CO_2$Fixation Process by Euglena Gracilis Z with a Photobioreactor (광반응기와 Euglena gracilis Z를 이용한 이산화탄소 고정화 공정의 거동 특성)

  • 신항식;채소용;황응주;임재림;남세용
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.644-648
    • /
    • 2000
  • Biological fixation of carbon dioxide using microalgae is known as an effective CO$_2$reduction technology. However, many environmental factors influence microalgal productivity. Optimal cultivation factors were determined for the green alga, Euglena gracilis Z, which offers high protein and vitamin E content for animal fodder. In batch culture in a photovioreactor, it was found that theinitial pH, temperature, CO$_2$concentration in air, and light intensity during the optimal cultivating conditions were 3.5, 27$^{\circ}C$, 5-10% and 520 ${\mu}$mol/㎡/s, respectively. When tap water and freshwater were used as cultivating media unsterilized tap water was found to be effective. A kinetic model was considered to determine the relationship between the specific growth rate and the light intensity. The half-velocity coefficient (K(sub)I) in the Monod model under photoautotrophic conditions was 978.9 ${\mu}$mol/㎡/s.

  • PDF

Growth Inhibition of the Diatom, Chaetoceros calcitrans by Alteromonas sp. SR-14 (Alteromonas sp. SR-14에 의한 규조 Chaetoceros calcitrans 증식저해)

  • KIM Ji Hoe;PARK Hi Yun;CHO Yong Chul;CHO Myo Heon;CHANG Dong Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Algicidal activities of Alteromonas sp. SR-14 against Chaetoceros calcitrans were investigated at various culture conditions. The algicidal activity by Alteromonas sp. SK-14 was dependent on temperature. In mixed culture of C, calcitrans and Alteromonas sp. SR-14 at various temperatures, the algicidal activity of Alteronzonas sp. SR-14 was the highest at $20^{\circ}C$, but not showed algicidal activity above $25^{\circ}C$. With the inoculation of $10^4$ cells/ml of C. calcitrans, the diatom could not grow at the microalgal culture condition until 15 days by the simultaneous inoculation of less than 10 cells/ml of Alteromonas sp. SR-14. Alteromonas sp. SR-14 showed the strongest algicidal activity against logarithmic phase cells of C. calcitrans. During the mixed culture of C. calcitrans and Alteromonas sp. SR-14, supplementation of Conwy medium nutrients, changes of light intensity with 1,300$\~$4,600 lux and agitation with 200 rpm did not affect the algicidal activity.

  • PDF

Influence of Temperature and Salinity on the Growth and Size of the Rotifer Brachionus plicatilis and B. rotundiformis (온도와 염분이 Rotifer Brachionus plicatilis와 B. rotundiformis의 성장과 크기에 미치는 영향)

  • Youn, Joo-Yeon;Hur, Sung-Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.658-664
    • /
    • 2011
  • Rotifers of the genus Brachionus are commonly used as a live food for larval fish, and rotifers of different sizes are preferred according the mouth size of the fish. Rotifer species vary in size, and individual size can depend on the temperature and salinity of the rearing environment. We investigated the effects of temperature and salinity for two species, B. plicatilis (250-300 ${\mu}m$) and B. rotundiformis (100-220 ${\mu}m$). Two strains of B. plicatilis (CCUMP 36 and 48) and two strains of B. rotundiformis (CCUMP 51 and 56) were received from the Culture Collection of Useful Marine Plankton (CCUMP) at Pukyong National University and cultured with the green alga, Nannochloris oculata (KMMCC 16) from the Korea Marine Microalgal Culture Center (KMMCC). The growth and size of rotifers were examined at three water temperatures ($16^{\circ}C$, $24^{\circ}C$, $32^{\circ}C$) and four salinities (20 psu, 25 psu, 30 psu, 35 psu) under continuous light (40 ${\mu}molm^{-2}s^{-1}$). The maximum density and growth rate of B. rotundiformis were greater than those of B. plicatilis. The lorica length of B. plicatilis ranged from 215.4 to 269.7 ${\mu}m$ and from 154.9 to 206.6 ${\mu}m$ for B. rotundiformis, depending on strain, temperature and salinity. Rotifers were smaller when cultured at high temperatures, regardless of salinity. B. rotundiformis preferred higher salinity than B. plicatilis. The results demonstrated that the size of rotifers could be controlled to some extent by temperature and salinity.