Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.2.28

Insertional mutations exhibiting high cell-culture density HCD phenotypes are enriched through continuous subcultures in Chlamydomonas reinhardtii  

Thung, Leena (Institute of Chemical Engineering and Sciences, A-STAR)
He, Jing (Ocean Research Centre of Zhoushan, Zhejiang University)
Zhu, Qingling (Ocean College, Zhejiang University)
Xu, Zhenyu (Ocean College, Zhejiang University)
Liu, Jianhua (Ocean Research Centre of Zhoushan, Zhejiang University)
Chow, Yvonne (Institute of Chemical Engineering and Sciences, A-STAR)
Publication Information
ALGAE / v.33, no.1, 2018 , pp. 127-141 More about this Journal
Abstract
Low efficiency in microalgal biomass production was largely attributed to the low density of algal cell cultures. Though mutations that reduced the level of chlorophyll or pigment content increased efficiency of photon usage and thus the cell-culture density under high-illumination growth conditions (e.g., >$500{\mu}mol\;photon\;m^{-2}\;s^{-1}$), it was unclear whether algae could increase cell-culture density under low-illumination conditions (e.g., ${\sim}50{\mu}mol\;photon\;m^{-2}\;s^{-1}$). To address this question, we performed forward genetic screening in Chlamydomonas reinhardtii. A pool of >1,000 insertional mutants was constructed and subjected to continuous subcultures in shaking flasks under low-illumination conditions. Complexity of restriction fragment length polymorphism (RFLP) pattern in cultures indicated the degree of heterogeneity of mutant populations. We showed that the levels of RFLP complexity decreased when cycles of subculture increased, suggesting that cultures were gradually populated by high cell-culture density (HCD) strains. Analysis of the 3 isolated HCD mutants after 30 cycles of subcultures confirmed that their maximal biomass production was 50-100% higher than that of wild type under low-illumination. Furthermore, levels of chlorophyll content in HCD mutant strains were similar to that of wild type. Inverse polymerase chain reaction analysis identified the locus of insertion in two of three HCD strains. Molecular and transcriptomic analyses suggested that two HCD mutants were a result of the gain-of-function phenotype, both linking to the abnormality of mitochondrial functions. Taken together, our results demonstrate that HCD strains can be obtained through continuous subcultures under low illumination conditions.
Keywords
continuous subcultures; green microalgae; high cell-culture density (HCD); insertional mutation; inverse-PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Polle, J. E. W., Kanakagiri, S. D. & Melis, A. 2003. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49-59.
2 Pollock, S. V., Colombo, S. L., Prout, D. L. Jr., Godfrey, A. C. & Moroney, J. V. 2003. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a $low-CO_2$ atmosphere. Plant Physiol. 133:1854-1861.   DOI
3 Pollock, S. V., Pootakham, W., Shibagaki, N., Moseley, J. L. & Grossman, A. R. 2005. Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation. Photosynth. Res. 86:475-489.   DOI
4 Sartory, D. P. & Grobbelaar, J. U. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177-187.   DOI
5 Shimogawara, K., Fujiwara, S., Grossman, A. & Usuda, H. 1998. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821-1828.
6 Sizova, I., Fuhrmann, M. & Hegemann, P. 2001. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Genetics 277:221-229.
7 Sueoka, N. 1960. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. U. S. A. 46:83-91.   DOI
8 Tam, L. W. & Lefebvre, P. A. 1993. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135:375-384.
9 Trapnell, C., Pachter, L. & Salzberg, S. L. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.   DOI
10 Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S. & Goodenough, U. 2009. Algal lipid bodies: stress induction,purification, and biochemical characterization in wildtype and starchless Chlamydomonas reinhardtii. Eukaryot.Cell 8:1856-1868.   DOI
11 Work, V. H., Radakovits, R., Jinkerson, R. E., Meuser, J. E., Elliott, L. G., Vinyard, D. J., Laurens, L. M. L., Dismukes, G. C. & Posewitz, M. C. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell 9:1251-1261.   DOI
12 Yoshioka, S., Taniguchi, F., Miura, K., Inoue, T., Yamano, T. & Fukuzawa, H. 2004. The novel Myb transcription factor LCR1 regulates the $CO_2-responsive$ gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16:1466-1477.   DOI
13 Harris, E. H. 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:363-406.   DOI
14 Kang, S. G., Ortega, J., Singh, S. K., Wang, N., Huang, N. N., Steven, A. C. & Maurizi, M. R. 2002. Functional proteolytic complexes of the human mitochondrial ATPdependent protease, hClpXP. J. Biol. Chem. 277:21095-21102.   DOI
15 Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A. & Fernandez, E. 2004. Transgenic microalgae as green cellfactories. Trends Biotechnol. 22:45-52.   DOI
16 Lumbreras, V., Stevens, D. R. & Purton, S. 1998. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14:441-447.   DOI
17 Gonzalez-Ballester, D., de Montaigu, A., Higuera, J. J., Galvan, A. & Fernandez, E. 2005. Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiol. 137:522-533.   DOI
18 Folda, A., Citta, A., Scalcon, V., Calì, T., Zonta, F., Scutari, G., Bindoli, A. & Rigobello, M. P. 2016. Mitochondrial thioredoxin system as a modulator of cyclophilin D redox state. Sci. Rep. 6:23071.   DOI
19 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. & Regev, A. 2011. Fulllength transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644-652.   DOI
20 Harris, E. H. 1989. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, CA, 780 pp.
21 Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
22 Cheng, X., Liu, G., Ke, W., Zhao, L., Lv, B., Ma, X., Xu, N., Xia, X., Deng, X., Zheng, C. & Huang, K. 2017. Building a multipurpose insertional mutant library for forward and reverse genetics in Chlamydomonas. Plant Methods 13:36.   DOI
23 Dent, R. M., Haglund, C. M., Chin, B. L., Kobayashi, M. C. & Niyogi, K. K. 2005. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137:545-556.   DOI
24 Engler-Blum, G., Meier, M., Frank, J. & Muller, G. A. 1993. Reduction of background problems in nonradioactive northern and southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal. Biochem. 210:235-244.   DOI
25 Ochman, H., Gerber, A. S. & Hartl, D. L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120:621-623.
26 Erjavec, N., Bayot, A., Gareil, M., Camougrand, N., Nystrom, T., Friguet, B. & Bulteau, A. L. 2013. Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic. Biol. Med. 56:9-16.   DOI
27 Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu, L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Ferris, P., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. -P., Riano-Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. -J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martinez, D., Ngau, W. C. A., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S. & Grossman, A. R. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245-250.   DOI
28 Moellering, E. R. & Benning, C. 2010. RNA interference silencing of a major lipid droplet protein affects lipiddroplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9:97-106.   DOI