• 제목/요약/키워드: microalgae

검색결과 590건 처리시간 0.034초

라카디브 해역 몰디브 자생 해조류 Padina boryana 추출물의 항산화 효능 평가 (Evaluation of the Antioxidant Efficacy of Padina boryana Extract from Maldivian Seaweed from Laccadive Sea Area)

  • 김현수;;;이정민;임미진;고석천;이효근;제준건;전유진;이대성
    • 한국수산과학회지
    • /
    • 제54권2호
    • /
    • pp.162-169
    • /
    • 2021
  • Global warming has affected the distribution of organisms for decades and has displayed rapid ascent recently. Research into the effects on tropical organisms are vital. Padina boryana is a resourceful marine microalgae in the Maldives Sea in the Laccadive region. A 70% ethanol extraction (PBE) of this seaweed was used to investigate its antioxidant potential. Both in vitro and in vivo models were implemented. PBE exhibited protective potential against H2O2 induced apoptosis. ROS levels were suppressed due to PBE. PBE expressed a cytoprotective nature. In vivo experiments involving the zebra fish model conformed its validity. The antioxidant efficacy of PBE was dose dependent. Study outcomes suggest PBE has potential as a novel and valuable marine resource to aid the functional food and cosmeceutical industries.

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions

  • Seong-Joo Hong;Kyung June Yim;Young-Jin Ryu;Choul-Gyun Lee;Hyun-Jin Jang;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.260-267
    • /
    • 2023
  • In this study, we sought to improve lutein and zeaxanthin production in Mychonastes sp. 247 and investigated the effect of environmental factors on lutein and zeaxanthin productivity in Mychonastes sp. The basic medium selection and N:P ratio were adjusted to maximize cell growth in one-stage culture, and lutein and zeaxanthin production conditions were optimized using a central composite design for two-stage culture. The maximum lutein production was observed at a light intensity of 60 μE/m2/s and salinity of 0.49%, and the maximum zeaxanthin production was observed at a light intensity of 532 μE/m2/s and salinity of 0.78%. Lutein and zeaxanthin production in the optimized medium increased by up to 2 and 2.6 folds, respectively, compared to that in the basic medium. Based on these results, we concluded that the optimal conditions for lutein and zeaxanthin production are different and that optimization of light intensity and culture salinity conditions may help increase carotenoid production. This study presents a useful and potential strategy for optimizing microalgal culture conditions to improve the productivity of lutein and zeaxanthin, which has applications in the functional food field.

Microalgal-MBR과 Bacterial-MBR 운전에 있어 EPS 조성이 Fouling 발생특성에 미치는 영향 (Effects of EPS Composition on Fouling Characteristics at the Microalgal-MBR and Bacterial-MBR Process)

  • 김태연;이수현;권수민;황선진
    • 한국물환경학회지
    • /
    • 제39권2호
    • /
    • pp.175-180
    • /
    • 2023
  • The aim of this study was to compare the fouling characteristics of Extracellular polymeric substances (EPS) secreted by Chlorella vulgaris with the case of Bacterial-MBR (BMBR), Microalgal-MBR (MMBR) for advanced wastewater treatment using the Laboratory scale, in order to suggest a method to minimize fouling in MMBR by identifying the effects of amounts and compositions of EPS secreted by C. vulgaris and bacteria in the activated sludge on fouling. Contrary to expectations, fouling occurred relatively severely in the MMBR from the beginning of the operation than in the BMBR. Reasons for such a fouling pattern were considered to be the effect of C-EPS, which accumulates on the membrane surface of MMBR 30 times more than that on the membrane surface of activated sludge (BMBR). In this respect, according to the results of this experiment and a comparative review of several previous studies, it was confirmed that unlike activated sludge, in which the ratio of P-EPS was relatively higher than that of C-EPS, in case of C. vulgaris, the ratio of C-EPS to P-EPS was relatively higher than that in case of activated sludge. This was presumed to be the main cause of the significant fouling phenomenon in MMBR. However, an increase in TMP with increasing C-EPS concentration was not observed.

Identification and characterization of Dunaliella salina OH214 strain newly isolated from a saltpan in Korea

  • Minjae, Kim;Hyeon Jun, Oh;Khanh, Nguyen;EonSeon, Jin
    • ALGAE
    • /
    • 제37권4호
    • /
    • pp.317-329
    • /
    • 2022
  • Carotenoids are effective antioxidants that are found in various photosynthetic organisms. Marine microalgae are an advantageous bioresource for carotenoid production because they do not compete with other crops for freshwater and arable land. This study reports a newly isolated Dunaliella strain from the Geumhong Saltpan on Yeongjong Island, West Sea, Korea. The new strain was isolated and classified as Dunaliella salina through phylogenetic analysis and was named the OH214 strain (Deposit ID: KCTC14434BP). The newly isolated strain can survive in a wide range of NaCl concentrations (0.3-5.0 M NaCl), but grows well in 0.6 to 1.5 M NaCl culture medium. Under high-light conditions (500 ± 10 μmol photons m-2 s-1), the cells accumulated three times more β-carotene than under low-light conditions (50 ± 5 μmol photons m-2 s-1). The cells accumulated 2.5-fold more β-carotene under nitrogen-deficient (1 mM KNO3) conditions (3.24 ± 0.36 ㎍ 106 cells-1) than in nitrogen-sufficient conditions (>5 mM KNO3). The lutein content under nitrogen-deficient conditions (1.73 ± 0.09 ㎍ 106 cells-1) was more than 24% higher than that under nitrogen-sufficient conditions. Under the optimized culture condition for carotenoid induction using natural seawater, D. salina OH214 strain produced 7.97 ± 0.09 mg g DCW-1 of β-carotene and 4.65 ± 0.18 mg g DCW-1 of lutein, respectively. We propose that this new microalga is a promising strain for the simultaneous production of β-carotene and lutein.

Microalgal diversity in response to differential heavy metals-contaminated wastewater levels at North Nile Delta, Egypt

  • Maha Youssef Kamal Elmousel;Eithar El-Mohsnawy;Yassin Mohamed Al-Sodany;Eladl Galal Eltanahy;Mohamed Ali Abbas;Awatif Saad Ali
    • Journal of Ecology and Environment
    • /
    • 제47권3호
    • /
    • pp.157-167
    • /
    • 2023
  • Background: The most hazardous wastewater sources in the northern part of the Middle Nile Delta, Egypt; receiving a massive amount of agricultural, industrial, and sewage drainage are Kitchener drain which is one of the tallest drainage systems, and Burullus Lake which represents the 2nd largest Egyptian coastal lake. Results: The current work is to determine the abundance and frequency of cyanophytes, chlorophytes, and bacillariophytes and the correlation between them and environmental abiotic components. Among sixty nine microalgal species, 19 species are belong Cyanophyta, 26 belong Chlorophyta and 24 belong Bacillariophyta. Genus Scenedesmus (Chlorophyta) was the most abundant in the study area (13 species), followed by Genus Oscillatoria (9 species) and Genus Navicula (7 species). Nostoc muscorum and Chlorella vulgaris were the most common and recorded in all sites (100% of the locations) under study. The application of the two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis revealed agglomerating of 4 groups (communities) at 4th level of classification and reasonable segregation between these groups. Zinc, cadmium and lead were showed the highest levels (0.26±0.03, 0.26±0.06, and 0.17±0.01 ppm, respectively). Conclusions: The correlation analysis between water and community variables indicated a high negative correlation of total algae richness with nickel (r = -0.936, p < 0.01). Cyanophyta and Bacillariophyta were correlated negatively (r = -0.842, p < 0.01). However, Chlorophyta showed a negative richness with each of Ni and Pb (r = -0.965, -0.873, respectively) on one hand and a high positive correlation was revealed (r = 0.964) with all environmental variables on the other hand.

피부노화 방지에 이용되는 천연물의 종류 및 추출연구 동향 (Trends in Extraction Research and Types of Natural Substances Used for Skin Aging Prevention)

  • 곽호석;전영상
    • 산업진흥연구
    • /
    • 제9권2호
    • /
    • pp.115-125
    • /
    • 2024
  • 노인인구 증가와 피부미용에 관해 관심이 커지고 천연물에 대한 과학적 고찰의 전문화는 천연소재에 대한 활용 증가로 이어지고 있다. 본 논문은 천연원료를 피부노화 경감 소재로 활용한 문헌의 추출법 및 경감능을 기반으로 천연물의 종류, 추출물의 기능성 및 추출 기술을 조사하였다. 천연물 유래 기능성 소재의 피부노화 경감에 대한 직접적 영향을 평가하기 위해 콜라겐에 미치는 영향 중 Procollagen 합성능과 MMP-1 경감능을 기반으로 추출물의 기능성을 판단하였다. 각 천연물은 위의 평가법을 이용한 문헌 중 식물, 한약재 및 녹조류로 구분하여 각 원료로부터 기능성 소재의 확보를 위한 추출 기술과 주요 결과를 서술한다. 이에 따라 피부노화 완화를 위한 기능성 소재의 추출 기술과 연구 동향을 제공하여 천연물 활용 연구 분야에 신속한 접근을 제공한다.

한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의 영향 (Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters)

  • 이창규;이옥희;이삼근
    • 한국해양학회지:바다
    • /
    • 제10권1호
    • /
    • pp.79-91
    • /
    • 2005
  • 한국 연안에서 출현하는 주요 적조생물의 적조발생 특성을 알아보기 위해 편모조류 10종을 대상으로 하여 수온과 염분, 광도에 따른 종의 성장률을 조사하였고, 또한 최근 13년간의 적조발생자료와 1999년도 및 2000년도 남해안연안에서 조사한 적조생물의 출현밀도를 비교, 분석하였다. 수온에 따른 적조생물의 성장은 Heterocapsa triquetra, Eutreptiella gymnastica, Alexandrium tamarense의 경우 대체로 $16{\sim}22^{\circ}C$에서 최대성장률을 보였으나, $10{\sim}16^{\circ}C$의 저수온에서도 비교적 높은 성장률을 보였고 $22^{\circ}C$이상의 고수온에서는 오히려 성장률이 급격히 감소되는 것으로 나타나 저온성종의 특성을 보였다. Prorocentrum micans와 Pyramimonas sp.는 $19^{\circ}C$ 이하의 저수온에서는 낮은 성장률을 보였으나 $22{\sim}25^{\circ}C$에서는 높은 성장률을 보여 고온종의 특성을 나타냈으며, Akashiwo sanguinea, Hetemsigma akashiwo Prorocentrum minimum, Scrippsiella tnchoidea는 $16{\sim}25^{\circ}C$의 광범위한 수온 범위에서 비교적 높은 성장률을 보여 광온성종의 특성을 보였다. 또한 이러한 결과는 이 종들이 자연상태에서 적조를 일으키는 수온 범위와도 대체로 일치하였다 염분에 따른 성장은 대부분의 종이 염분 $30{\sim}35$ psu에서 높은 성장률을 보였는데, E. gymnastica는 35 psu 이상의 고염분보다는 $10{\sim}30$ psu의 저염분에서 더 높은 성장률을 나타내 저염성을 보였으며, H. akashiwo, P. minimum, H. triquetra는 $15{\sim}40$ psu의 넓은 염분 범위에서 양호한 성장률을 보여 광염성종의 특성을 보였다. 이종들은 한국 연안에서 강우 직후 염분이 25 psu이하로 하강하는 저염분 상태에서 빈번히 적조를 일으키고 있는데, 이것은 이종들의 저염 및 광염성 특성과 밀접한 관련이 있는 것으로 판단되었다. 광도별 성장은 H. akashiwo, P. minimum, Pyramimonas sp.는 $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$의 고광도에서 비교적 높은 성장률을 보였다. A. sanguinea, A. tamarense, H. triquetra는 $150{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$에서 가장 높은 성장률을 보였고 $100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ 이상의 고광도에서 는 오히려 성장률이 급격히 감소되는 것으로 나타났다. 전반적으로 수온과 일조량이 높은 시기인 하계에 적조를 일으키는 고온성 종은 고광도에서 성장이 좋은 것으로 나타났고, 수온과 일조량이 낮은 동, 춘계에 적조를 일으키는 저온성 종은 저 광도에서 성장이 양호한 것으로 나타났다.

Ankistrodesmus bibraianus의 최적 배양조건 설정을 통한 수질오염물질 제거 및 축산 폐수 처리 적용 (Removal of water pollutants and its application to swine wastewater treatment through the establishment of best optimal growth conditions of Ankistrodesmus bibraianus)

  • 황인성;박영민;이예은;김덕원;박지수;오은지;유진;정근욱
    • 환경생물
    • /
    • 제38권1호
    • /
    • pp.82-92
    • /
    • 2020
  • 축산 폐수는 고농도의 영양염류와 중금속을 함유하고 있어, 배출될 때 수질을 악화시킨다. 기존 처리 기술과 비교하여 bioremediation은 축산 폐수 처리에 유능하다. 특히, 미세조류는 오염물질 제거에 잠재력을 가지고 있다. 본 연구에서는 Ankistrodesmus bibraianus를 이용하여 축산 폐수 내 영양염류(질소(N), 인(P))와 중금속(구리(Cu), 아연(Zn))의 제거 가능성을 평가하고, A. bibraianus의 최적 배양조건을 확립하였다. 연구결과, 최적 배양조건은 28℃, pH 7, 광주기는 14:10 h로 설정되었다. N과 P의 단일 처리구(500, 1,000, 5,000, 10,000mg L-1)에서 제거효율은 각각 22.9~80.6%와 11.9~50.0%였다. 또한, N과 P의 복합 처리구에서 제거효율은 각각 16.4~58.3%와 7.80~49.8%였다. Cu와 Zn의 단일 처리구(10, 30, 50mg L-1)에서 제거효율은 각각 15.5~81.5%와 6.28~34.3%였다. 유사하게, Cu와 Zn의 복합 처리구에서 제거효율은 각각 16.7~74.5%와 5.58~27.5%였다. 또한 영양염류(N 및 P)와 중금속(Cu 및 Zn)의 성장 및 제거효율을 축산 폐수에 적용할 수 있음을 나타냈다. 본 연구의 결과에 따르면 A. bibraianus는 축산 폐수 내 영양염류와 중금속 제거에 이용할 수 있을 것으로 사료된다.