DOI QR코드

DOI QR Code

Microalgal diversity in response to differential heavy metals-contaminated wastewater levels at North Nile Delta, Egypt

  • Received : 2023.06.26
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

Background: The most hazardous wastewater sources in the northern part of the Middle Nile Delta, Egypt; receiving a massive amount of agricultural, industrial, and sewage drainage are Kitchener drain which is one of the tallest drainage systems, and Burullus Lake which represents the 2nd largest Egyptian coastal lake. Results: The current work is to determine the abundance and frequency of cyanophytes, chlorophytes, and bacillariophytes and the correlation between them and environmental abiotic components. Among sixty nine microalgal species, 19 species are belong Cyanophyta, 26 belong Chlorophyta and 24 belong Bacillariophyta. Genus Scenedesmus (Chlorophyta) was the most abundant in the study area (13 species), followed by Genus Oscillatoria (9 species) and Genus Navicula (7 species). Nostoc muscorum and Chlorella vulgaris were the most common and recorded in all sites (100% of the locations) under study. The application of the two-way indicator species analysis (TWINSPAN) and detrended correspondence analysis revealed agglomerating of 4 groups (communities) at 4th level of classification and reasonable segregation between these groups. Zinc, cadmium and lead were showed the highest levels (0.26±0.03, 0.26±0.06, and 0.17±0.01 ppm, respectively). Conclusions: The correlation analysis between water and community variables indicated a high negative correlation of total algae richness with nickel (r = -0.936, p < 0.01). Cyanophyta and Bacillariophyta were correlated negatively (r = -0.842, p < 0.01). However, Chlorophyta showed a negative richness with each of Ni and Pb (r = -0.965, -0.873, respectively) on one hand and a high positive correlation was revealed (r = 0.964) with all environmental variables on the other hand.

Keywords

Acknowledgement

Authors thank the Egyptian Academy of Scientific Research and Technology (ASRT) for funding Maha YK Elmousel during the practical work.

References

  1. Abu Al-Izz MS. Landforms of Egypt. Cairo: American University in Cairo Press; 1971. 
  2. Allen SE. Chemical analysis of ecological materials. London: Black Well Scientific; 1974. 
  3. Alprol AE, Heneash AMM, Soliman AM, Ashour M, Alsanie WF, Gaber A, et al. Assessment of water quality, eutrophication, and zooplankton community in Lake Burullus, Egypt. Diversity. 2021;13(6):268. https://doi.org/10.3390/d13060268. 
  4. Al-Sodany YM, Issa AA, Kahil AA, Ali EF. Diversity of soil cyanobacteria in relation to dominant wild plants and edaphic factors at western Saudi Arabia. Annu Res Rev Biol. 2018;26(3):1-14. https://doi.org/10.9734/ARRB/2018/40492. 
  5. American Public Health Association (APHA). Standard methods for the examination of water and wastewater. 14th ed. Washington DC: APHA; 1976. 
  6. Archibald REM. Diversity in some South African diatom associations and its relation to water quality. Water Res. 1972;6(10):1229-38. https://doi.org/10.1016/0043-1354(72)90023-1. 
  7. Badawy W, Elsenbawy A, Dmitriev A, El Samman H, Shcheglov A, ElGamal A, et al. Characterization of major and trace elements in coastal sediments along the Egyptian Mediterranean Sea. Mar Pollut Bull. 2022;177:113526. https://doi.org/10.1016/j.marpolbul.2022.113526. 
  8. Brinza L, Dring MJ, Gavrilescu M. Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J. 2007;6(3):237-51.  https://doi.org/10.30638/eemj.2007.029
  9. Dumont HJ, El-Shabrawy GM. Lake Borullus of the Nile Delta: a short history and an uncertain future. Ambio. 2007;36(8):677-82. https://doi.org/10.1579/0044-7447(2007)36[677:lbotnd]2.0.co;2. 
  10. El-Naggar AH, Osman MEH, Dyab MA, El-Mohsenawy EA. Cobalt and lead toxicities on Calothrix fusca and Nostoc muscorum. J Union Arab Biol Cairo. 1999;7:421-41. 
  11. El-Shinnawy I. Al-Burullus wetland's hydrological study. Cairo: Med-WetCoast, Global Environmental Facility (GEF), Egyptian Environmental Affairs Agency (EEAA); 2002. 
  12. Farrag MMS, El-Naggar HA, Abou-Mahmoud MMA, Alabssawy AN, Ahmed HO, Abo-Taleb HA, et al. Marine biodiversity patterns off Alexandria area, southeastern Mediterranean Sea, Egypt. Environ Monit Assess. 2019;191(6):367. https://doi.org/10.1007/s10661-019-7471-7. 
  13. Fernandez-Figueroa EG, Buley RP, Barros MUG, Gladfelter MF, McClimans WD, Wilson AE. Carlson's Trophic State Index is a poor pre-dictor of cyanobacterial dominance in drinking water reservoirs. AWWA Wat Sci. 2021;3(2):e1219. https://doi.org/10.1002/aws2.1219. 
  14. Gauch HG, Whittaker RH. Hierarchical classification of community data. J Ecol. 1981;69(2):537-57. https://doi.org/10.2307/2259682. 
  15. Gaur A, Adholeya A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci. 2004; 86(4):528-34. http://www.jstor.org/stable/24107905.  107905
  16. Gonzalez-Davila M. The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar Chem. 1995;48(3-4):215-36. https://doi.org/10.1016/0304-4203(94)00045-F. 
  17. Guiry MD, Guiry GM. AlgaeBase; World-Wide electronic publication. National University of Ireland: Galway, Ireland, 2020. Available online: https://www.algaebase.org. Accessed on Jan 2021. 
  18. Guo R, Lu D, Liu C, Hu J, Wang P, Dai X. Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae). Ecotoxicology. 2022;31(5):746-60. https://doi.org/10.1007/s10646-022-02532-8. 
  19. Hegewald E, Schmidt A. [Asterarcys Comas, a widely distributed tropical genus of Chlorophyceae]. Algol Stud. 1992;66:25-30. German. 
  20. Heneash AMM, Tadrose HRZ, Hussein MMA, Hamdona SK, Abdel-Aziz N, Gharib SM. Potential effects of abiotic factors on the abundance and distribution of the plankton in the Western Harbour, south-eastern Mediterranean Sea, Egypt. Oceanologia. 2015;57(1):61-70. https://doi.org/10.1016/j.oceano.2014.09.003. 
  21. Heneash AM, Alprol AE, El-Naggar HA, Gharib SM, Hosny S, El-Alfy MA, et al. Multivariate analysis of plankton variability and water pollution in two highly dynamic sites, southeastern Mediterranean (Egyptian coast). Arab J Geosci. 2022;15(4):330. https://doi.org/10.1007/s12517-022-09595-1. 
  22. Herrera-Estrella LR, Guevara-Garcia AA, Lopez-Bucio J. Heavy metal adaptation. In: Batool F, Pervaiz N, Khalid Q, Abbasi AA, editors. Encyclopedia of life sciences. Hoboken: John Wiley & Sons; 2001. 
  23. Hill MO. TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca: Section of Ecology and Systematics, Cornell University; 1979a. 
  24. Hill MO. DECORANA: a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ithaca: Section of Ecology and Systematics, Cornell University; 1979b. 
  25. Hill MO, Gauch HG. Detrended correspondence analysis: an improved ordination technique. Vegetatio. 1980;42(1-3):47-58. https://doi.org/10.1007/BF00048870. 
  26. John J. Phycoremediation: algae as tools for remediation of mine-void wetlands. In: Ambasht RS, Ambasht NK, editors. Modern trends in applied aquatic ecology. New York: Springer New York; 2003. p. 133-47. 
  27. Khaybullina LS, Gaysina LA, Johansen JR, Krautova M. Examination of the terrestrial algae of the Great Smoky Mountains National Park, USA. Fottea. 2010;10(2):201-15. https://doi.org/10.5507/fot.2010.011. 
  28. Komarek J, Zapomelova E, Smarda J, Kopecky J, Rejmankova E, Woodhouse J, et al. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlan, Guatemala, with a description of Limnoraphis gen. nov. Fottea. 2013;13(1):39-52. https://doi.org/10.5507/fot.2013.004. 
  29. Li YP, Tang CY, Yu ZB, Acharya K. Correlations between algae and water quality: factors driving eutrophication in Lake Taihu, China. Int J Environ Sci Technol. 2014;11(1):169-82. https://doi.org/10.1007/s13762-013-0436-4. 
  30. Magurran AE. Ecological diversity and its measurement. Dordrecht: Springer Dordrecht; 1988. 
  31. Mustapha MU, Halimoon N. Microorganisms and biosorption of heavy metals in the environment: a review paper. J Microb Biochem Technol. 2015;7(5):253-6. https://doi.org/10.4172/1948-5948.1000219. 
  32. Neto AI, Pinto IS. Introduction to marine algae: overview. In: Malcata FX, Pinto IS, Guedes AC, editors. Marine macro- and microalgae: an overview. Boca Raton: CRC Press; 2018. 
  33. Patnaik P. Handbook of environmental analysis: chemical pollutants in air, water, soil and solid wastes. Boca Raton: CRC Press; 1997. 
  34. Pielou EC. Ecological diversity. New York: A Willy-Interscience Publication; 1975.
  35. Priya AK, Jalil AA, Vadivel S, Dutta K, Rajendran S, Fujii M, et al. Heavy metal remediation from wastewater using microalgae: recent advances and future trends. Chemosphere. 2022;305:135375. https://doi.org/10.1016/j.chemosphere.2022.135375. 
  36. Seif D, Nasr M, Soliman MR, Moustafa M, Elbarki W. Water quality analysis and model simulation for the second largest polluted lake in Egypt. Int J Eng Technol. 2018;7(3):1762-7. https://doi.org/10.14419/ijet.v7i3.13593. 
  37. Shaban W, Abdel-Gaid SE, El-Naggar HA, Bashar MA, Masood MF, Salem ESS, et al. Effects of recreational diving and snorkeling on the distribution and abundance of surgeonfishes in the Egyptian Red Sea northern islands. Egypt J Aquat Res. 2020;46(3):251-7. https://doi.org/10.1016/j.ejar.2020.08.010. 
  38. Shaltout KH, Al-Sodany YM. Vegetation analysis of Burullus Wetland: a RAMSAR site in Egypt. Wetl Ecol Manag. 2008;16(5):421-39. https://doi.org/10.1007/s11273-008-9079-5. 
  39. Shehata SA, Bader SA. Effect of Nile River water quality on algal distribution at Cairo, Egypt. Environ Int. 1985;11(5):465-74. https://doi.org/10.1016/0160-4120(85)90230-2. 
  40. Singh DV, Bhat RA, Upadhyay AK, Singh R, Singh DP. Microalgae in aquatic environs: a sustainable approach for remediation of heavy metals and emerging contaminants. Environ Technol Innov. 2021;21:101340. https://doi.org/10.1016/j.eti.2020.101340. 
  41. Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol. 2016;7:529. https://doi.org/10.3389/fmicb.2016.00529. 
  42. Sondergaard M, Larsen SE, Jorgensen TB, Jeppesen E. Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecol Indic. 2011;11(5):1403-12. https://doi.org/10.1016/j.ecolind.2011.03.002. 
  43. Srimongkol P, Sangtanoo P, Songserm P, Watsuntorn W, Karnchanatat A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: current status and future prospects. Front Bioeng Biotechnol. 2022;10:904046. https://doi.org/10.3389/fbioe.2022.904046. Erratum in: Front Bioeng Biotechnol. 2022;10:1048819. 
  44. Supeng L, Guirong B, Hua W, Fashe L, Yizhe L. TG-DSC-FTIR analysis of cyanobacteria pyrolysis. Phys Procedia. 2012;33:657-62. https://doi.org/10.1016/j.phpro.2012.05.117. 
  45. Suresh Kumar K, Dahms HU, Won EJ, Lee JS, Shin KH. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol Environ Saf. 2015;113:329-52. https://doi.org/10.1016/j.ecoenv.2014.12.019. 
  46. Suthers IM, Redden AM, Bowling LC, Kobayashi T, Rissik D. Plankton processes and the environment. In: Suthers IM, Rissik D, Richardson A, editors. Plankton: a guide to their ecology and monitoring for water quality. 2nd ed. Collingwood: CSIRO Press; 2019. p. 21. 
  47. Sweetly DJ, Sangeetha K, Suganthi B. Biosorption of heavy metal lead from aqueous solution by non-living biomass of sargassum myriocystum. Int J Appl Innov Eng Manage. 2014;3(4):39-45. 
  48. Szymanska-Walkiewicz M, Glinska-Lewczuk K, Burandt P, Obolewski K. Phytoplankton sensitivity to heavy metals in Baltic coastal lakes. Int J Environ Res Public Health. 2022;19(7):4131. https://doi.org/10.3390/ijerph19074131. 
  49. Talling JF, Sinada F, Taha OE, Sobhy EMH. Phytoplankton: composition, development and productivity. In: Dumont HJ, editor. The Nile. Dordrecht: Springer; 2009. p. 431-62. 
  50. Tavsanoglu UN, Maleki R, Akbulut N. Effects of salinity on the zooplankton community structure in two Maar Lakes and one freshwater lake in the Konya closed Basin, Turkey. Ekoloji. 2015;24(94):25-32. 
  51. Ter Braak CJF, Smilauer P. Canoco reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power; 2002. 
  52. United Nations Environment Programme (UNEP). Analytical methods for environmental water quality. Burlington: UNEP Global Environment Monitoring System (GEMS)/Water Programme & International Atomic Energy Agency; 2004. 
  53. Venkatachalapathy R, Nandhakumar G, Karthikeyan P. Diatoms community structure in relation to physico-chemical factors in Yercaud Lake, Salem District, Tamil Nadu, India. Int J Innov Technol Explor Eng. 2013;2(4):220-2. 
  54. Wang JH, Li C, Xu YP, Li SY, Du JS, Han YP, et al. Identifying major contributors to algal blooms in Lake Dianchi by analyzing river-lake water quality correlations in the watershed. J Clean Prod. 2021;315:128144. https://doi.org/10.1016/j.jclepro.2021.128144. 
  55. Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21(2-3):213-51. https://doi.org/10.2307/1218190. 
  56. Younis AM. Environmental impacts on Egyptian Delta Lakes' biodiversity: a case study on Lake Burullus. In: Negm A, Bek M, Abdel-Fattah S, editors. Egyptian coastal lakes and wetlands: part II. Edinburgh: Springer, Cham; 2019. p. 107-28. 
  57. Zakaria HY, El-Naggar HA. Long-term variations of zooplankton community in Lake Edku, Egypt. Egypt J Aquat Biol Fish. 2019;23(4):215-26.  https://doi.org/10.21608/ejabf.2019.53997