Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters

한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의 영향

  • Lee, Chang-Kyu (National Fisheries Research & Development Institute) ;
  • Lee, Ok-Hee (School of Environmental engineering, Inje University) ;
  • Lee, Sam-Geun (National Fisheries Research & Development Institute)
  • Published : 2005.02.28

Abstract

In order to understand growth characteristics of ten major species of microalgae responsible for frequent harmful algal blooms in Korean coastal waters, the growth rates of the isolates were examined in relation with the impacts of water temperature, salinity and irradiance. In addition, their bloom events since 1990 as well as monthly abundance of vegetative cells were analyzed. Heterocapsa triquetra, Eutreptiella gymnastica and Alexandrium tamarense were considered as relatively mid temperature adapted species in that growth rates were comparatively high at low water temperatures of $10{\sim}16^{\circ}C$ and drastically decreased at above $22^{\circ}C$. Prorocentrum micans and Pyramimonas sp. were categorized as relatively high temperature adapted species by showing comparatively better growths at high water temperatures above $25^{\circ}C$. Akashiwo sanguinea, Heterosigma akashiwo, Prorocentrum minimum and Scrippsiella trochoidea were eurythermal species with relative high growth rates in a broad ranges of water temperature, $16{\sim}25^{\circ}C$ were slightly halophobic, showing better growths at low salinities of $10{\sim}30$ psu than at above 35 psu. H. akashiwo, P. minimum and H. triquetra were euryhaline species with remarkable growths in a broad ranges of salinity, 15-40 psu. Frequent algal blooms by these three species at extremely low salinities below 25 psu after rainfall were attributed to their euryhaline and slightly halophobic physiological characteristics. Growth rates of H. akashiwo, P. minimum and Pyraminonas sp. increased with the increase of irradiance within the experimental ranges of $2{\sim}150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. However, A. sanguinea, A. tamarense and H. triquetra showed better growths at comparatively low irradiance of $50{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ and drastic decreases in growth rates above $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ of irradiance. Overall, relatively high temperature adapted species make blooms frequently in high water temperature season with strong natural irradiance, and relatively low temperature adapted species grow better at low water temperature with relatively weak natural irradiance.

한국 연안에서 출현하는 주요 적조생물의 적조발생 특성을 알아보기 위해 편모조류 10종을 대상으로 하여 수온과 염분, 광도에 따른 종의 성장률을 조사하였고, 또한 최근 13년간의 적조발생자료와 1999년도 및 2000년도 남해안연안에서 조사한 적조생물의 출현밀도를 비교, 분석하였다. 수온에 따른 적조생물의 성장은 Heterocapsa triquetra, Eutreptiella gymnastica, Alexandrium tamarense의 경우 대체로 $16{\sim}22^{\circ}C$에서 최대성장률을 보였으나, $10{\sim}16^{\circ}C$의 저수온에서도 비교적 높은 성장률을 보였고 $22^{\circ}C$이상의 고수온에서는 오히려 성장률이 급격히 감소되는 것으로 나타나 저온성종의 특성을 보였다. Prorocentrum micans와 Pyramimonas sp.는 $19^{\circ}C$ 이하의 저수온에서는 낮은 성장률을 보였으나 $22{\sim}25^{\circ}C$에서는 높은 성장률을 보여 고온종의 특성을 나타냈으며, Akashiwo sanguinea, Hetemsigma akashiwo Prorocentrum minimum, Scrippsiella tnchoidea는 $16{\sim}25^{\circ}C$의 광범위한 수온 범위에서 비교적 높은 성장률을 보여 광온성종의 특성을 보였다. 또한 이러한 결과는 이 종들이 자연상태에서 적조를 일으키는 수온 범위와도 대체로 일치하였다 염분에 따른 성장은 대부분의 종이 염분 $30{\sim}35$ psu에서 높은 성장률을 보였는데, E. gymnastica는 35 psu 이상의 고염분보다는 $10{\sim}30$ psu의 저염분에서 더 높은 성장률을 나타내 저염성을 보였으며, H. akashiwo, P. minimum, H. triquetra는 $15{\sim}40$ psu의 넓은 염분 범위에서 양호한 성장률을 보여 광염성종의 특성을 보였다. 이종들은 한국 연안에서 강우 직후 염분이 25 psu이하로 하강하는 저염분 상태에서 빈번히 적조를 일으키고 있는데, 이것은 이종들의 저염 및 광염성 특성과 밀접한 관련이 있는 것으로 판단되었다. 광도별 성장은 H. akashiwo, P. minimum, Pyramimonas sp.는 $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$의 고광도에서 비교적 높은 성장률을 보였다. A. sanguinea, A. tamarense, H. triquetra는 $150{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$에서 가장 높은 성장률을 보였고 $100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ 이상의 고광도에서 는 오히려 성장률이 급격히 감소되는 것으로 나타났다. 전반적으로 수온과 일조량이 높은 시기인 하계에 적조를 일으키는 고온성 종은 고광도에서 성장이 좋은 것으로 나타났고, 수온과 일조량이 낮은 동, 춘계에 적조를 일으키는 저온성 종은 저 광도에서 성장이 양호한 것으로 나타났다.

Keywords

References

  1. Adachi, R., 1972. A taxonomical study of the red tide organisms. J. Fac. Fish. Pref. Univ. Mie, 9: 9-144
  2. Anderson, D.M., 1984. Shellfish toxicity and dormant cysts in toxic dinoflagellate blooms. In: Seafood toxins, Ragelis E.P. ed., American Chemical Society, Washington D.C. 125-138 pp
  3. Anderson, D.M., 1998. Physiology and bloom dynamics of toxic Alexandrium tamarense species with emphasis on life cycle transitions. In: Physiological ecology of harmful algal blooms. Anderson, D.M., A.D. Cembella and G.M. Hallegradff, eds., NATO, ASI Series. Ecological science, 41: 29-48
  4. Anderson, D.M., D.M. Kulis and G.J. Doucette, 1994. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and Canada. Mar. BioI., 120: 467-478 https://doi.org/10.1007/BF00680222
  5. Anderson, D.M., S.W Chisholm and C.J. Watras, 1983. The importance of life cycle events in the population dynamics of Gonyaulax tamarehsis. Mar. BioI., 76: 179-190 https://doi.org/10.1007/BF00392734
  6. Botes, L., G.C. Pitcher and P.A. Cook, 2000. The potential risk of harmful algae to abalone farming on the south coast of South Africa. Journal of Shellfish Research, 19: 502
  7. Brazeiro, A, J.T. Mendoca and G. Ferrari, 1997. The first toxic bloom of Alexandrium tamarense in Uruguay: associated environmental factors. Atlantica 1997, 19: 19-29
  8. Cannon, J.A., 1990. Development and dispersal of red tides in the Port River, South Australia. In: Toxic Marine Phytoplankton. Grancli, E., B. Sundstroem, L. Edler and D.M. Anderson, eds. 1990. 110-115
  9. Cembella, A.D., M.A. Quilliam, N.I. Lewis, A.G. Bauder, C. Dell-Aversano. K. Thomas, J. Jellett and R.R. Cusack, 2002. The toxic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae, 1: 313-325 https://doi.org/10.1016/S1568-9883(02)00048-3
  10. Franks, P.J., 1990. Dinoflagellate bloom and physical systems in the Gulf of Maine. Tech. Rep. Woods Hole Oceanogr. Inst., 1990, 267 pp
  11. Franks, P.J.S. and D.M. Anderson, 1992. Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Mar. BioI., 112: 153-164 https://doi.org/10.1007/BF00349739
  12. Garate-Lizarranga, I., M.L Hernandez-Orozco, C.J. Band-Schmidt and G. Serrano-Casillas, 2001. Red tides along the coasts of Baja California Sur, Mexico (1984 to 2001).2001. Investigations Marinas, CICIMAR, 16: 127-134
  13. Grzebyk, D. and B. Berland, 1996. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. J. Plankton. Res., 18: 1837¬1849
  14. Haigh, R. and F.J.R. Taylor, 1990. Distribution of potentially harmful phytoplankton species in the northern Strait of Georgia, British Columbia. Can. J. Fish. Aquat. Sci., 47: 2339-2350 https://doi.org/10.1139/f90-260
  15. Hajdu, S., L. Elder, I. Olenina and B. Witek, 2000. Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea. Int. Rev. Hydrobiol., 85: 561-575 https://doi.org/10.1002/1522-2632(200011)85:5/6<561::AID-IROH561>3.0.CO;2-3
  16. Hallegraeff, G.M., 1992. On the global spreading of toxic dinoflagellates. Ciguatera Inf. Bull., 2: 2-4
  17. Hallegraeff, G.M., 1995. Harmful algal blooms: A global overview. In: Manual on harmful marine microalgae. Hallegraeff G.M., D.M. Anderson and A.D. Cembella ed. IOC Manuals and Guides No. 33: 1-19
  18. Honjo, T., 1993. Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. in: Toxic phytoplankton blooms in the sea. Smayda T.J. and Y. Shimizu, eds. Amsterdam Netherlands Elsevier, 3: 33-42
  19. Hosaka, M., 1992. Growth characteristics of a strain of Heterosigma akashiwo HADA isolated from Tokyo Bay, Japan. Bull. Plankton Soc. Jpn., 39: 49-58
  20. Iwasaki H., 1971. Studies on the red tide flagellates on Eutreptiella sp. and Exuviaella sp. appeared in Bingo-Nada, the Seto Inland Sea in 1970. J. Oceanogr. Soc. Jpn., 27: 152-157 https://doi.org/10.1007/BF02109134
  21. Jeong, H.J., J.K. Park, H.Y. Choi, J.S. Yang, J.H. Shim, Y.K. Shin, W.H. Yih, H.S. Kim and K.J. Cho, 2000. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea. 2. The temperal and spatial variations in the phytoplanktonic community in 1997. J. Oceanol. Soc. Korea, 5: 27-36
  22. Joint, I., J. Lewis, J. Aiken, R. Proctor, G. Moore, W. Higman and D.M. Anderson, 1997. International variability of PSP outbreaks on the north east UK coast. J. Plankton Res., 19: 937-956 https://doi.org/10.1093/plankt/19.7.937
  23. Jung, C.S., W.J. Choi, H.K. Kim, Y.G. Jung, J.B. Kim and W.A. Lim, 1999. Interrelation between Cochlodinium polykrikoides blooms and community structure of zooplankton in the coastal waters around Namhaedo in the South Sea of Korea, 1998. Bull. Nat'l, Fish. Res. Dev. Inst. Korea, 57: 153-161
  24. Kain, J.M. and E. Fogg, 1960. Studies of the growth of marine phytoplankton. 3. Prorocentrum micans Ehrenberg. J. Mar. BioI. Assoc. UK. 39: 33-50 https://doi.org/10.1017/S0025315400013084
  25. Kato, S., 1988. Oceanographic conditions associated with an intensive red tide bloom of Prorocentrum micans in Ise Bay. Bull. Jpn. Soc. Sci. Fish., 54: 1673-1679 https://doi.org/10.2331/suisan.54.1673
  26. Kim, C.H. and J.B. Shin, 1997. Harmful and toxic red tide algal development and toxins production in Korean coastal waters. Algae, 12: 269-276
  27. Kim, H.G., 1986a. Ecological study of dinoflagellate responsible for red tide. 1. The population growth and control of Prorocentrum triestinum Schiller. Bull. Nat. Fish. Res. Dev. Agency, 39: 1-6
  28. Kim, H.G., 1986b. Ecological study of dinoflagellate responsible for red tide. 2. The population growth of Prorocentrum minimum (Pav.) Schiller. Algae (The Kor. J. Phycol.), 1: 103-106
  29. Kim, H.G., J.S. Park and S.G. Lee, 1990. Coastal algal blooms caused by the cyst-forming dinoflagellates. Bull. Korean Fish. Soc., 23: 468-474
  30. Kim, H.G., S.G. Lee and K.H. An, 1996. Interannual changes in Heterosigma akashiwo blooms. Bull. Nat. Fish. Res. Dev. Agency, 52: 1-14
  31. Kondo, K., Y. Seike and Y. Date, 1990. Red tides in the brackish lake Nakanoumi. 2. Relationships between the occurrence of Prorocentrum minimum red tide and environmental conditions. Bull. Plankton Soc. Jpn., 37: 19-34
  32. Labib, W., 2000. Dinoflagellate 'Brown tides' in Alexandria, Egypt waters during 19971998. Pak. J. Mar. Sci., 9: 33-49
  33. Lassus, P., E. Abadie, Z. Amzil, C. Belin, M.A. Comps, P.P. Elziere, C. Le-Bec, C.L.B. Marcaillou, E. Nezan and R. Poggi, 1999. Contamination of Thau lagoon by A. tamarense. The November/ December 1988 episode. Plouzane-France Ifremer, 1999,44 pp
  34. Litaker, R.W., P.A. Tester, C.S. Duke, B.E. Kenney, J.L. Pinckney and J. Ramus, 2002a. Seasonal niche strategy of the bloom-forming dinoflagellate Heterocapsa triquetra. Mar. Ecol. Prog. Ser., 232: 45-62 https://doi.org/10.3354/meps232045
  35. Litaker, R.W., V.E. Warner, C. Rhyne, C.S. Duke, B.E. Kenney, J. Ramus and P.A. Tester, 2002b. Effect of diel and interday variations in light on the cell division pattern and in situ growth rates of the bloom-forming dinoflagellate Heterocapsa triquetra. Mar. Ecol. Prog. Ser., 232: 63-74 https://doi.org/10.3354/meps232063
  36. McLaughlin, J.J.A., 1979. Salinity influence on the ecology of phytoflagellate blooms in Lower New York Bay and adjacent waters. J. Exp. Mar. BioI. Ecol., 37: 213-223 https://doi.org/10.1016/0022-0981(79)90061-3
  37. Mori, S., Y. Nakamura, M. Watanabe and S. Yamochi, 1982. The effect of various environmental factors on the growth yield of red tide algae. II. Olisthodiscus luteus. Res. Rep. Natl. Inst. Environ. Stud. Jpn., 30: 71-86
  38. Nishijima, T., Y. Hata, S. Yamaguchi, 1989. Physiological ecology of Prorocentrum triestinum. Bull. Jpn. Soc. Sci. Fish., 55: 2009-2014 https://doi.org/10.2331/suisan.55.2009
  39. Okaichi, T., 1980. Soluble organic substances in bottommud of the Seto Inland Sea and their physiological effects on Eutreptiella sp. Umi To Sora, 56: 93-105
  40. Okaichi, T. and Y. Imatomi, 1979. Toxicity of Prorocentrum minimum var. Mariae-Lebouriae assumed to be a causative agent of short-necked clam poisonings. In. proceedings of 2nd International Conference on toxic dinoflagellate blooms., 385-388 pp
  41. Olli, K., A.S. Heiskanen and J. Seppala, 1996. Development and fate of Eutreptiella gymnastica bloom in nutrient-enriched enclosures in the coastal Baltic Sea. J. Plankton Res., 18: 1587-1604 https://doi.org/10.1093/plankt/18.9.1587
  42. Ono, K., S. Khan and Y. Onoue, 2000. Effects of temperature and light intensity on the growth and toxicity of Heterosigma akashiwo (Raphidophyceae). Aquacult. Res., 31: 427-433 https://doi.org/10.1046/j.1365-2109.2000.00463.x
  43. Robichaux, R.J., Q. Dortch and J.H. Wrenn, 1998. Occurrence of Gymnodinium sanguineum in Louisiana and Texas coastal waters, 1989-1994. NOAA Tech. Rep. NMFS, 143: 19-26
  44. Rodriguez-Villar, L. and O. Zarate-Huerta, 1985. Observations of red tides in San Jorge Bay, Antofagasta, Chile. Estud. Oceanol. Inst. Invest. Univ. Antofagasta, 4: 81-85
  45. Silva, E.S., 1985. Ecological factors related to Prorocentrum minimum bloom in obidos lagoon (Portugal). In. proceedings of 3rd International Conference on toxic dinoflagellate blooms, 251-256 pp
  46. Sorokin, Y.I., P.Y. Sorokin and G. Ravagnan, 1996. On an extremely dense bloom of the dinoflagellate Alexandrium tamarense in lagoon of the Po River Delta: impact on the environment. J. Sea Res., 35: 251-255 https://doi.org/10.1016/S1385-1101(96)90752-2
  47. Steidinger, K.A., D.A. Stockwell, E.W. Truby, W.J. Wardle, Q. Dortch and F.M. Van-dolah, 1998. Phytoplankton blooms off Louisiana and Texas, May-June 1994. NOAA Tech. Rep. NMFS, 143: 13-18
  48. Stein, J.R, 1973. Handbook of Phycological Methods. Cambridge University Press, London, 289-311 pp
  49. Wang, Z., Q. Zhang and H. Lu, 2000. Effect of temperature, salinity, light and pH on the growth of red tide organisms Prorocentrum micans. Oceanol. Lirnnol. Sin., Haiyang Yu Huzhao., 32: 15-18
  50. Watanabe, M.M and Y. Nakamura, 1984. Growth characteristics of a red tide flagellate, Heterosigma akashiwo HADA. I. The effect of temerature, salinity, light intensity and pH on growth. Res. Rep. Natl. Inst. Environ. Stud. Jpn., 63: 51-58
  51. Watanabe, M.M., Y. Nakamura and S. Mori, 1982. Effects of physicochemical factors and nutrients on the growth of Heterosigma akashiwo HADA from Osaka Bay, Japan. Jap. J. Phycol., 30: 279¬288
  52. Weise, A.M., M. Levasseur, F.J. Saucier, S. Senneville, E. Bonneau, S. Roy, G. Sauve, S. Michaud and J. Fauchot, 2002. The link between precipitation, reiver runoff and blooms of the toxic dinoflagellate Alexandrium tamarense bloom in the St. Lawrence. Can. J. Fish. Aquat. Sci., 59: 464-473 https://doi.org/10.1139/f02-024
  53. Wu, Y., C. Zhou, Y. Zhang, X. Pu and W. Li, 2000. Evolution and causes of formation of Gymnodinium sanuineum bloom in Yantai Sishili Bay. Oceanol. Lirnnol. Sin., Haiyang Yu Huzhao., 32: 159¬167
  54. Yamaji, I., 1984. Illustration of the marine plankton of Japan, Hoikusha Pub. Co. Japan. 122 pp
  55. Yamamoto, T., T. Hashimoto, K Tarutani and Y. Kotani, 2002. Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hirosima Bay, Japan. Harmful Algae, 1: 301-312 https://doi.org/10.1016/S1568-9883(02)00029-X
  56. Yamochi, S., 1984a. Effects of temperature on the growth of six species of red-tide flagellates occurring in Osaka Bay. Bull. Plankton Soc. Jpn., 31: 15-22
  57. Yamochi, S., 1984b. Nutrient factors involved in controlling the growth of red tide flagellates Prorocentrum micans, Eutreptiella sp. and Chattonella marina in Osaka Bay. Bull. Plankton Soc. Jpn., 31: 97-106
  58. Yamochi, S. and T. Abe, 1984. Mechanisms to initiate a Heterosigma akashiwo red in Osaka Bay. 2. Diel viertical migration. Mar. BioI., 83: 255-261 https://doi.org/10.1007/BF00397457
  59. Yan, T., M. Zhou and P. Qian, 2002. Growth of fish-killing red tide species raphidophyte Heterosigma akashiwo. Oceanol. Limnol. Sin. Haiyang Yu Huzhao, 33: 209-214
  60. Yang, J.S., H.Y. Choi, H.J. Jeong, J.Y. Jeong and J.K. Park, 2000. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea: 1. Physical and chemical characteristics in 1997. J. Oceanol. Soc. Korea,5: 16-26
  61. Yoshida, Y., S. Kojima and M. Sato, 1998. Relationship between the dominant occurrence of Heterosigma akashiwo and water quality or meteorological factors in the inner part of Tokyo Bay. Bull. Jpn. Soc. Sci. Fish., 64: 1013-1019 https://doi.org/10.2331/suisan.64.1013
  62. Zhu, M., R. Li, X. Mu and R. Ji, 1997. Harmful algal blooms in China Seas. Ocean. Res., 19: 173-184
  63. 국립수산과학원, 2003. 한국해양환경 조사연보 2002. 제7권. 193 pp
  64. 김창훈, 신재범, 1997. 한국 연안의 유해.유독 적조조류의 발생과 독성생산. Algae (The Kor. J. Phycol.), 12: 251-264
  65. 김학균, 이삼근, 안경호, 윤성화, 이필용, 이창규, 조은섭, 김정배, 최희구, 김평중, 1998. 한국연안의 적조. - 최근 적조의 발생 원인과 대책-. 국립수산진흥원, 292 pp
  66. 山本民次, 燇谷賢治, 松田 治, 2000. 有毒過鞭毛藻 Alexandrium tamarenseのブル一 發生 メカニズとの豫知および防御の可能性. 水産硏究業書 48: 250-176
  67. 신재범, 2002. 유독적조발생 예측을 위한 와편모조 Alexandrium tamarense/catenella 휴면포자의 분포 및 발아능 조사. 부경대학교 수산학석사 학위논문, 46 pp
  68. 이종수, 신일식, 김영만, 장동석, 1997. '96년 거제에서 패류 중독 사고를 유발한 진주담치의 마비성 독소. 한국수산학회지, 30: 158-160
  69. 이창규, 김형철, 이삼근, 정창수, 김학균, 임월애. 2001. 남해안 연안에서 적조생물 Cochlodinium polykrikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 광도 및 영양염류에 따른 성장특성. 한국수산학회지, 34: 691-696
  70. 박주석, 김학균, 이삼근, 1988. 진해만의 적조현상과 원인생물의 천이. 수진연구보고, 41: 1-26