• Title/Summary/Keyword: micro-patterning

Search Result 249, Processing Time 0.034 seconds

Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold (사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작)

  • Kim, Jin Young;Sung, Jungwoo;Cho, Seong J.;Kim, Chulhong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

Laser-Induced Direct Copper Patterning Using Focused $Ar^+$ Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 레이저 유도 직접 구리 패터닝)

  • Lee, Hong-Kyu;Lee, Kyoung-Cheol;Ahn, Min-Young;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.969-975
    • /
    • 2000
  • Laser direct writing of micro-patterned copper lines has been achieved by pyrolytic decomposition of copper formate films (Cu(HCOO)$_2$.4$H_2O$), as a metallo-organic precursor, using a focused CW Ar$^{+}$ laser beam (λ=514nm) on PCB boards and glass substrates. The linewidth and thickness of the lines wee investigated as a functin of laser power and scan speed. The profiles of the lines were measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force microscopy (AFM). The electrical resistivities of the patterned lines were also investigated as a function of laser parameters using probe station and semiconductor analyzer. We compared resistivities of the patterned copper lines with these of the Cu bulk. Resistivities decreased due to changes in morphology and porosity of the deposit, which were about 3.8 $\mu$$\Omega$cm and 12$\mu$$\Omega$cm on PCB and glass substrates after annealing at 30$0^{\circ}C$ for 5 minutes.s.

  • PDF

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF

The Cu-CMP's features regarding the additional volume of oxidizer (산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성)

  • Kim, Tae-Wan;Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Characteristic Analysis and Design of a Precise Manipulation of Microparticle using Surface Acoustic Wave Device (미세입자의 정밀제어를 위한 표면탄성파 장치의 특성연구 및 설계)

  • Kim, Dongjoon;Eom, Jinwoo;Ko, Byung-Han;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.660-666
    • /
    • 2015
  • Surface acoustic wave(SAW) device is used for transporting and patterning micro-scale particles such as cells. In this research, velocity of particles was investigated moved by SAW device with two types of interdigital electrode transducers(IDTs) under various conditions. SAW devices which have single IDTs and double IDTs were designed and fabricated. On the previous studies, resultant velocities of particles were predicted considering output power and power ratio between IDTs-shape. For more accurate prediction, power loss in SAW device and a power difference between two types of IDTs-shape were considered. Maximum error between the test results and predicted values was 5 % so the power loss must be considered in the velocity prediction of the particles.

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns (나노-마이크로 하이브리드 3차원 적층 패턴의 제조)

  • Park, Tae Wan;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Comparison of Durability for PUA Type Resin using Wear and Nano-indentation Test (마모 및 나노 압입 시험을 이용한 PUA계 레진의 내구성 비교)

  • Choi, Hyun Min;Kwon, Sin;Jung, Yoon-Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • Films with special properties (e.g., water-repellent films, optical films, anti-reflection films, and flexible films) are referred to as functional films. Recently, there has been interest in fine patterning methods for film fabrication. In particular there have been many studies that use a UV nanoimprint process involving a UV curing method. In this paper, a polymer film was fabricated by the UV nanoimprint process with a micro-pattern, and its durability was evaluated by a wear test and a nano-indentation test. The film mechanical properties (such as coefficient of friction, hardness, and modulus of elasticity) were measured. Moreover, the choice of PUA type resin used in the UV nanoimprint process was confirmed to impact the durability of the thin film. Despite making the polymer film samples using the same method and PUA type resin, different coefficient of friction, hardness, and modulus of elasticity values were obtained. PUA 4 resin had the most favorable coefficient of friction, hardness, and modulus of elasticity. This material is predicted to produce a high durability functional film.

Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns (다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

Technological Trends in a local anodization (국부적 양극산화 기술 동향)

  • Kwang-Mo Kang;Sumin Choi;Yoon-Chae Nah
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.