DOI QR코드

DOI QR Code

Technological Trends in a local anodization

국부적 양극산화 기술 동향

  • Kwang-Mo Kang (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Sumin Choi (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Yoon-Chae Nah (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
  • 강광모 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 최수민 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2023.04.24
  • Accepted : 2023.04.27
  • Published : 2023.04.30

Abstract

Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.

Keywords

Acknowledgement

본 연구는2023년도 한국기술교육대학교 교수교육연구진흥과제의 지원과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었음 (NRF-2022R1F1A1062961).

References

  1. S. Moon, Anodic oxidation treatment methods of metals, J. Korean Inst. Surf. Eng., 51 (2018) 1-10.
  2. F. Riboni, N. T. Nguyen, S. So, P. Schmuki, Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties, Nanoscale Horiz., 1 (2016) 445-466. https://doi.org/10.1039/C6NH00054A
  3. K. Lee, Principle of anodic TiO2 nanotube formations, Appl. Chem. Eng., 28 (2017) 601-606.
  4. T. J. Latempa, X. Feng, M. Paulose, C. A. Grimes, Temperature-dependent growth of self-assembled hematite (r-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties, J. Phys. Chem. C, 113 (2009) 16293-16298. https://doi.org/10.1021/jp904560n
  5. T.H. Kim, J.W. Lee, B.S. Kim, H. Cha, Y.C. Nah, Morphological investigation of anodized TiO2 nanotubes fabricated using different voltage conditions, Microporous Mesoporous Mater., 196 (2014) 41-45. https://doi.org/10.1016/j.micromeso.2014.04.056
  6. J. Lee, S.Y. Jung, V. S. Kumbhar, S. Uhm, H.J. Kim, K. Lee, Formation of aluminum oxide nanostructures via anodization of Al3104 alloy and their wettability behavior for self-cleaning application, Catal. Today, 359 (2021) 50-56. https://doi.org/10.1016/j.cattod.2019.04.062
  7. X. Zhou, J. Prikryl, M. Krbal, J. M. Macak, P. Schmuki, Molybdenum dichalcogenide nanotube arrays for hydrogen-evolutionreaction catalysis: Synergistic effects of sulfur and selenium in a core-shell tube wall, Electrochem. Commun., 82 (2017) 112-116. https://doi.org/10.1016/j.elecom.2017.08.004
  8. Y. Yang, D. Kim, P. schmuki, Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers, Electrochem. Commun.,13 (2011) 1198-1201. https://doi.org/10.1016/j.elecom.2011.08.045
  9. K. K. Upadhyay, G. Cha, H. Hildebrand, P. schmuki, T. M. Silva, M. F. Montemor, M. Altomare, Capacitance response in an aqueous electrolyte of Nb2O5 nanochannel layers anodically grown in pure molten o-H3PO4, Electrochim. Acta, 281 (2018) 725-737. https://doi.org/10.1016/j.electacta.2018.06.014
  10. Y.C. Nah, I. Paramasivam, R. Hahm, N. K. Shrestha, P. Schmuki, Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse, Nanotechnology, 21 (2010) 105704.
  11. Z. Su, S. Grigorescu, L. Wang, K. Lee, P. Schmuki, Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting, Electrochem. Commun., 50 (2015) 15-19. https://doi.org/10.1016/j.elecom.2014.10.017
  12. R. Hahn, J. G. Brunner, J. Kunze, P. Schmuki, S. Virtanen, A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: Rapid anodization in chloride containing solutions, Electrochem. Commun., 10 (2008) 288-292. https://doi.org/10.1016/j.elecom.2007.12.007
  13. R. Wang, F. Li, J. Ji, F. Wang, CoMoO4 enhanced anodized cobalt oxide nanotube as an efficient electrocatalyst for hydrogen evolution reaction, Appl. Surf. Sci., 579 (2022) 152128.
  14. S. Berger, F. Jakubka P. Schmuki, Self-ordered hexagonal nanoporous hafnium oxide and transition to aligned HfO2 nanotube layers, Electrochem. Solid-State Lett., 12 (2009) K45-K48. https://doi.org/10.1149/1.3117253
  15. B. Pandey, P. S. Thapa, D. A. Higgins, T. Ito, Formation of self-organized nanoporous anodic oxide from metallic gallium, Langmuir, 28 (2012) 13705-13711. https://doi.org/10.1021/la302672a
  16. K. Engelkemeier, A. Sun, D. Voswinkel, O. Grydin, M. Schaper, W. Bremser, Zinc anodizing: structural diversity of anodic zinc oxide controlled by the type of electrolyte, ChemElectroChem. 8 (2021) 2155-2168. https://doi.org/10.1002/celc.202100216
  17. S. Berger, F. Jakubka P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10 (2008) 1916-1919. https://doi.org/10.1016/j.elecom.2008.10.002
  18. Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties, J. Am. Chem. Soc., 130 (2008) 16154-16155. https://doi.org/10.1021/ja807106y
  19. D. Kowalski, D. Kim, P. schmuki, TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications, Nano Today, 8 (2013) 235-264. https://doi.org/10.1016/j.nantod.2013.04.010
  20. K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, P. Schmuki, Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency Photocatalysis, J. Am. Chem. Soc., 132 (2010) 1478.
  21. S. Berger, A. Ghicov, Y.C. Nah, P. Schmuki, Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices, Langmuir, 25 (2009) 4841-4844. https://doi.org/10.1021/la9004399
  22. H. Lee, V. S. Kumbhar, J. Lee, H. Oh, K. Lee, Boosted photocatalytic hydrogen evolution by tuning inner pore size and co-catalyst thickness of the anodic TiO2 nanotubes, Catal. Today, 359 (2020) 3-8.
  23. D. Kim, K. Lee, P. Roy, B.I. Birajdar, E. Spiecker, P. Schmuki, Formation of a non-thickness-limited titanium dioxide and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48 (2009) 9326.
  24. N, Khaliq, M. A. Rasheed, G. Cha, M. Khan, S. Karim, P. Schmuki, G. Ali, Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles, Sens. Actuators B Chem., 302 (2020) 127200.
  25. F. Mohammadpour, M. Altomare, S. So, K. Lee, M. Mokhtar, A. Alshehri, S. A. Al.-Thabaiti, P. Schmuki, Hightemperature annealing of TiO2 nanotube membranes for efficient dye-sensitized solar cells, Semicond. Sci. Technol., 31 (2016) 014010.
  26. E. Gongadze, D. Kabaso, S. Bauer, T. Slivnik, P. Schmuki, U. V. Rienen, A. Iglic, Adhesion of osteoblasts to a nanorough titanium implant surface, Int. J. Nanomedicine, 6 (2011) 1801-1816. https://doi.org/10.2147/IJN.S21755
  27. J. Choi, J. K. Lee, J. H. Lim, S. J, Kim, Technology trends in fabrication of nanostructures of metal oxides by anodization and their applications, J. Korean Ind. Eng. Chem., 19 (2008) 249-258.
  28. A. Lind, O. Vistad, M. F. Sunding, K. A. Andreassen, J. H, Cavka, C. A. Grande, Multi-purpose structured catalysts designed and manufactured by 3D printing, Mater. Des., 187 (2020) 108377.
  29. H. Sopha, A. Kashimbetova, L. Hromadko, I. Saldan, L. Celko, E. B. Montufa, J. M. Macak, Anodic TiO2 nanotubes on 3D-printed titanium meshes for photocatalytic applications, Nano Lett., 21 (2021) 8701-8706. https://doi.org/10.1021/acs.nanolett.1c02815
  30. L. E. McNamara, T. Sjostrom, K. E. V. Burgess, J. J. W. Kim, E. Liu, S. Gordonov, P. V. Moghe, R, M. D. Meek, R. O. C. Oreffo, B. Su, M. J. Dalby, Skeletal stem cell physiology on functionally distinct titania nanotopographies, Biomaterials, 32 (2011) 7403-7410. https://doi.org/10.1016/j.biomaterials.2011.06.063
  31. H. Liu, S. Hoeppenr, U. S. Schubert, Nanoscale Materials Patterning by Local Electrochemical Lithography, Adv. Eng. Mater., 18 (2016) 890-902. https://doi.org/10.1002/adem.201500486
  32. J.C. Lin, T.L. Jiang, Laser trench method for mask-free direct patterning of porous silicon films, IEEE Electron Device Lett., 41 (2020) 1074-1077.
  33. C. M. Siket, N. Tillner, A. I. Mardare, A. Reuveny, C. D. Grill, F. Hartmann, G. Kettlgruber, R. Moser, J. P. Kollender, T. Someya, A. W. Hassel, M. Kaltenbrunner, S. Bauer, Direct writing of anodic oxides for plastic electronics, npj Flex. Electron., 2 (2018) 23.
  34. H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, Scanning tunneling microscope tip-induced anodization for nanofabrication of titanium, J. Phys. Chem., 98 (1994) 4352-4357. https://doi.org/10.1021/j100067a023
  35. R. Garcia, A. W. Knoll, E. Riedo, Advanced scanning probe lithography, Nat. Nanotechnol., 9 (2014) 577-587. https://doi.org/10.1038/nnano.2014.157
  36. K.M Kang, Fabrication of patterned TiO2 nanotube layers utilizing 3D printer platform and their electrochromic properties, Master's thesis, Graduate School of Korea University of Technology and Education, (2022).
  37. Z. Lai, D. Li, S. Cai, M. Liu, F. Huang, G. Zhang, X. Wu, Y. Jin, Small-area techniques for micro- and nanoelectrochemical characterization: A Review, Anal. Chem., 95 (2023) 357-373.
  38. T. Sjostrom, N. Fox, B. Su, A study on the formation of titania nanopillars during porous anodic alumina throughmask anodization of Ti substrates, Electrochim. Acta, 56 (2010) 203-210. https://doi.org/10.1016/j.electacta.2010.08.099
  39. T. Sjostrom, L. E. McNamara, L. Yang, M. J. Dalby, B. Su, Novel anodization technique using a block copolymer template for nanopatterning of titanium implant surfaces, ACS Appl. Mater. Interfaces, 4 (2012) 6354-6361. https://doi.org/10.1021/am301987e
  40. D. Wang, T. Hu, L. Hu, B. Yu, Y. Xia, F. Zhou, W. Liu, Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stability, Adv. Func. Mater., 19 (2009) 1930-1938. https://doi.org/10.1002/adfm.200801703
  41. H. Jha, T. Kikuchi, M. Sakairi, H. Takahashi, Aluminum microstructures on anodic alumina for aluminum wiring boards, ACS Appl. Mater. Interfaces, 2 (2010) 774-777. https://doi.org/10.1021/am100135z
  42. M. Calleja, M. Tello, R. Garcia, Size determination of field-induced water menisci in noncontact atomic force microscopy, J. Appl. Phys., 92 (2002) 5539-5542. https://doi.org/10.1063/1.1510171
  43. A. Lostao, K. Lim, M. C. Pallares, A. Ptak, C. Marcuello, Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy, Int. J. Biol. Macromol., 238 (2023), 124089.
  44. H. Sugimura, S. Nanjo, H. Sano, K. Murase, Gold nanoparticle arrays fabricated on a silicon substrate covered with a covalently bonded alkyl monolayer by electroless plating combined with scanning probe anodization lithography, J. Phys. Chem. C, 113 (2009) 11643-11646.
  45. A. I. Mardare, A. W. Hassel, Quantitative optical recognition of highly reproducible ultrathin oxide films in microelectrochemical anodization, J. Appl. Phys., 80 (2009) 046106.
  46. M. Bilal, M. Sakairi, 3D printed solution flow type microdroplet cell for simultaneous area selective anodizing, J. Adv. Res., 26 (2020) 43-51. https://doi.org/10.1016/j.jare.2020.06.019
  47. C. M. Siket, A. I. Mardare, M. Kaltenbrunner, and S. Bauer, Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy, Electrochim. Acta, 113 (2013) 755-761. https://doi.org/10.1016/j.electacta.2013.07.114
  48. V. Badets, G. Loget, P. Garrigue, N, Sojic, D. Zigah. Combined local anodization of titanium and scanning photoelectrochemical mapping of TiO2 spot arrays, Electrochim. Acta, 222 (2016) 84-91. https://doi.org/10.1016/j.electacta.2016.10.151
  49. D. L. Swinya, D. M. Yerga, M. Walker, P. R. Unwin, Surface nanostructure effects on dopamine adsorption and electrochemistry on glassy carbon electrodes, J. Phys. Chem. C, 126 (2022) 13399-13408. https://doi.org/10.1021/acs.jpcc.2c02801
  50. A. J. Wain, Scanning electrochemical microscopy for combinatorial screening applications: a mini-review, Electrochem. Commun., 46 (2014) 9-12. https://doi.org/10.1016/j.elecom.2014.05.028
  51. M. Bilal, M. Sakairi, Fast fabrication of localized porous alumina patterns with 3D printed microdroplet cell, J. Electrochem. Soc., 167 (2020) 081501.
  52. J. P. Kollender, A. I, Mardare, A. W. Hassel, Multi-scanning droplet cell microscopy (multi-SDCM) for truly parallel high throughput electrochemical experimentation, Electrochim. Acta, 179 (2015) 32-37. https://doi.org/10.1016/j.electacta.2015.04.103