• Title/Summary/Keyword: micro-CT image

Search Result 69, Processing Time 0.03 seconds

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling (서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석)

  • Lim, Hyoung Jun;Choi, Ho-Il;Lee, Min-Jung;Yun, Gun Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

Quantitative Analysis Methods for Adapting Image J programs on Mouse Calvarial defected Model (Image J 프로그램을 사용한 마우스 두개골 결손모델상의 정량적인 분석방법)

  • Jung, Hongmoon;Won, Doyeon;Jung, Jaeeun
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.365-370
    • /
    • 2013
  • This mouse calvarial defected model is frequently used for new scaffold development in the bone regeneration. Most experiments are carried out in this way by measuring the bone regeneration of mouse calvaria defected area. As a next step, hematoxylin and eosin staining is analyzed by sacrificing mice On the other hand, the quantitative analysis for bone regeneration is carried out by micro computed tomography. However, there are several drawbacks with the micro computed tomography. That is, it takes a long time and it is quite expensive for bone regeneration quantitative analysis. This study was performed by simply measuring the quantity of bone regeneration in mouse clavaira defected area on two-dimensional digital x-ray images via Image J. Consequentially, this experimental method by using J program might help bio-technologist researcher regarding new bone regeneration by comparing the quantity of bone regeneration quickly and precisely as well.

Stress Distribution of Occlusal Loading Applied on Cervical Region Using 3D Finite Element Analysis (교합하중에 의한 치경부 응력분포의 3차원 유한요소해석)

  • Woo S.G.;Kim G.H.;Son K.;Park J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.521-522
    • /
    • 2006
  • Occlusal loading is considered as the main factor of noncarious cervical lesions. The goal of this study is to identify stress distribution using three dimensional finite element analysis, when occlusal loading is applied on the cervical lesion of human tooth. A finite element model was constructed from micro-CT image and three kinds of static force(500 N) were assumed. In all cases stress concentrates on the same area in the cement-enamel junction. This finding is consistent with published experimental results.

  • PDF

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.

Effect of Vibration on Trabecualr Bone of OVX Rats (기계적 자극이 난소 제거한 쥐 해면골에 미치는 영향 분석)

  • Ko C.Y.;Lee T.W.;Woo D.G.;Kim H.S.;Kim C.H.;Lee B.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.183-184
    • /
    • 2006
  • Some researchers proposed positive effects of whole body vibration (WBV) on osteoporotic trabecular bones of animals. In the present study, the correlation between the improvement of morphological characteristics and the effect of WBV was investigated and analyzed in OVX rats. The rats were randomly assigned to 5 groups: control, sham, WBV 17Hz, WBV 30Hz and WBV 45Hz. The WBV groups were exercised on a vibration platform (magnitude : $1mm_{peak-peak}$, frequency : 17Hz, 30Hz and 45Hz, 30 minutes/day for 5 days/week). The 4th lumbar on rats was scanned by In-vivo Micro-CT at the week 0(just before WBV) and the week 8(after WBV). Structural parameters of the 4th lumbar, based on two dimensional (2D) scan image data, were investigated and analyzed. The quantitative decrement rate of trabecular bone on WBV groups with 30Hz and 45Hz were lower than control and sham groups. The results showed the positive effect of WBV on osteoporotic bones of OVX rats.

  • PDF

Effect of Vibration on Trabecualr Bone of OVX Rats (기계적 자극이 난소 제거한 쥐 해면골에 미치는 영향 분석)

  • Ko C.Y.;Lee T.W.;Woo D.G.;Kim H.S.;Kim C.H.;Lee B.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.649-650
    • /
    • 2006
  • Some researchers proposed positive effects of whole body vibration (WBV) on osteoporotic trabecular bones of animals. In the present study, the correlation between the improvement of morphological characteristics and the effect of WBV was investigated and analyzed in OVX rats. The rats were randomly assigned to 5 groups: control, sham, WBV 17Hz, WBV 30Hz and WBV 45Hz. The WBV groups were exercised on a vibration platform (magnitude $1mm_{peak-peak}$, frequency : 17Hz, 30Hz and 45Hz, 30 minutes/day for 5 days/week). The 4th lumbar on rats was scanned by In-vivo Micro-CT at the week 0(iust before WBV) and the week 8(after WBV). Structural parameters of the 4th lumbar, based on two dimensional (2D) scan image data, were investigated and analyzed. The quantitative decrement rate of trabecular bone on WBV groups with 30Hz and 45Hz were lower than control and sham groups. The results showed the positive effect of WBV on osteoporotic bones of OVX rats.

  • PDF

Theory of X-ray microcomputed tomography in dental research: application for the caries research (치과 분야 연구에서 미세전산화 단층촬영술의 이론: 치아우식증에 대한 적용)

  • Park, Young-Seok;Bae, Kwang-Hak;Chang, Ju-Hea;Shon, Won-Jun
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.98-107
    • /
    • 2011
  • Caries remains prevalent throughout modern society and is the main disease in the field of dentistry. Although studies of this disease have used diverse methodology, recently, X-ray microtomography has gained popularity as a non-destructive, 3-dimensional (3D) analytical technique, and has several advantages over the conventional methods. According to X-ray source, it is classified as monochromatic or polychromatic with the latter being more widely used due to the high cost of the monochromatic source despite some advantages. The determination of mineral density profiles based on changes in X-ray attenuation is the principle of this method and calibration and image processing procedures are needed for the better image and reproducible measurements. Using this tool, 3D reconstruction is also possible and it enables to visualize the internal structures of dental caries. With the advances in the computer technology, more diverse applications are being studied, such automated caries assessment algorithms.

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc

  • Ahn, Yeh-Chan;Oak, Chulho;Park, Jung-Eun;Jung, Min-Jung;Kim, Jae-Hun;Lee, Hae-Young;Kim, Sung Won;Park, Eun-Kee;Jung, Maan Hong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 2016
  • The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.