Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.5.607

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc  

Ahn, Yeh-Chan (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
Oak, Chulho (Innovative Biomedical Technology Research Center, Kosin University College of Medicine)
Park, Jung-Eun (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
Jung, Min-Jung (Innovative Biomedical Technology Research Center, Kosin University College of Medicine)
Kim, Jae-Hun (Department of Internal Medicine, Kosin University College of Medicine)
Lee, Hae-Young (Department of Chest Surgery, Kosin University College of Medicine)
Kim, Sung Won (Department of Internal Medicine, Kosin University College of Medicine)
Park, Eun-Kee (Innovative Biomedical Technology Research Center, Kosin University College of Medicine)
Jung, Maan Hong (Department of Chest Surgery, Kosin University College of Medicine)
Publication Information
Journal of the Optical Society of Korea / v.20, no.5, 2016 , pp. 607-613 More about this Journal
Abstract
The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.
Keywords
Pleura; Optical coherence tomography; Sclerotherapy; Talc;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. P. Corcoran, L. Acton, A. Ahmed, R. J. Hallifax, I. Psallidas, J. M. Wrightson, and F. V. Gleeson, “Diagnostic value of radiological imaging pre‐and post‐drainage of pleural effusions,” Respirology 21(2), 392-395 (2016).   DOI
2 T. Havelock, R. Teoh, D. Laws, and F. Gleeson, “Pleural procedures and thoracic ultrasound: British Thoracic Society pleural disease guideline,” Thorax 65(Suppl 2), i61-i76 (2010).   DOI
3 A. N. Leung, N. L. Müller, and R. R. Miller. “CT in differential diagnosis of diffuse pleural disease,” AJR Am. J. Roentgenol. 154(3), 487-492 (1990).   DOI
4 P. C. Yang, K. T. Luh, D. B. Chang, H. D. Wu, C. J. Yu, and S. H. Kuo, “Value of sonography in determining the nature of pleural effusion: analysis of 320 cases,” AJR Am. J. Roentgenol. 159(1), 29-33 (1992).   DOI
5 A. C. Friedman, S. B. Fiel, M. S. Fisher, P. D. Radecki, A. S. Lev-Toaff, and D. F. Caroline, “Asbestos-related pleural disease and asbestosis: a comparison of CT and chest radiography,” AJR Am. J. Roentgenol. 150(2), 269-275 (1988).   DOI
6 S. Standring, Gray’’s anatomy: the anatomical basis of clinical practice. Elsevier Health Sciences (Elsevier Health Sciences, 2015).
7 Y. C. Ahn, Y. G. Chae, S. S. Hwang, B. K. Chun, M. H. Jung, S. J. Nam, H. Y. Lee, J. M. Chung, C. Oak and E. K. Park, “In vivo Optical Coherence Tomography Imaging of the Mesothelium Using Developed Window Models,” J. Opt. Soc. Korea 19(1), 69-73 (2015).   DOI
8 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178 (1991).   DOI
9 L. Paoletti, S. Caiazza, G. Donelli, and F. Pocchiari, “Evaluation by electron microscopy techniques of asbestos contamination in industrial, cosmetic, and pharmaceutical talcs,” Regul Toxicol Pharmacol 4, 222-35 (1984).   DOI
10 J. Kim, C. Oak, T. Jang, M. Jung, B. Chun, E. K. Park, and K. Takahashi, “Lung Cancer Probably Related to Talc Exposure: a Case Report,” Industrial Health 51(2), 228-231 (2013).   DOI
11 J. R. Campos, F. S. Varga, E. C. Werebe, P. Cardoso, L. R. Teixeira, F. B. Jatene and R. W. Light, “Thoracoscopy talc poudrage: a 15-year experience,” Chest 119, 801-806 (2001).   DOI
12 Y. Chen, C. Li, L. Xu, H. Lin, and Y. Cui, “Novel treatment for chylothorax after esophagectomy with 50% glucose pleurodesis,” Ann Vasc Surg. 24 694.e9-694.13 (2010).   DOI
13 F. Muta, S. Takamori, T. Matsuo, Y. Iwasaki, and K. Yoshiyama, “Changes in the Pleural Cavity by Pleurodesis using Talc or OK-432: An Experimental Study,” Surg. Today 41, 111-114 (2011).   DOI
14 I. Y. Adamson, J. Bakowska, and D. H. Bowden, “Mesothelial cell proliferation: a nonspecific response to lung injury associated with fibrosis,” Am J Respir Cell Mol Biol 10(3), 253-258 (1994).   DOI
15 L. Kennedy, R. A. Harley, S. A. Sahn, and C. Strange, “Talc slurry pleurodesis. Pleural fluid and histologic analysis,” Chest 107, 1707-1712 (1995).   DOI
16 R. Hou, T. Le, S. D. Murgu, Z. Chen, and M. Brenner, “Recent advances in optical coherence tomography for the diagnoses of lung disorders,” Expert Rev. Respir. Med. 5(5), 711-724 (2011).   DOI
17 T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).   DOI
18 F. Whitwell, J. Scott, and M. Grimshaw. “Relationship between occupations and asbestosfibre content of the lungs in patients with pleural mesothelioma, lung cancer, and other diseases,” Thorax 32(4), 377-386 (1977).   DOI
19 L. Räber, J. Heo, M. Radu, H. Garcia, G. Stefanini, A. Moschovitis, J. Dijkstra, H. Kelbaek, S. Windecker, and P. Serruys. “Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques,” Euro Intervention 8(1), 98-108 (2012).
20 J. Li, T. Ma, D. Mohar, E. Steward, M. Yu, Z. Piao, Y. He, K. Shung, Q. Zhou, P. Patel, and Z. Chen. “Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo,” Scientific Reports 5, 18406. (2015).   DOI
21 C. A. Pope III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” JAMA 287(9), 1132-1141 (2002).   DOI
22 V. D. Aaron, R. V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco and P. J. Vileneuve, “Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application,” Environ. Health Perspect. 118(6), 847-855 (2010).   DOI
23 O. Raaschou-Nielsen, R. Beelen, M. Wang, G. Hoek, Z. J. Andersen, B. Hoffmann, and M. Nieuwenhuijsen, “Particulate matter air pollution components and risk for lung cancer,” Environ. Int. 87, 66-73 (2016).   DOI
24 N. Ndlovu, J. T. Naude, and J. Murray, “Compensation for environmental asbestos-related diseases in South Africa: a neglected issue,” Glob. Health Action 6 19410 (2013).   DOI
25 M. Bayram and N. D. Bakan, “Environmental exposure to asbestos: from geology to mesothelioma,” Curr. Opin. Pulm. Med. 20(3), 301-307 (2014).   DOI