Browse > Article
http://dx.doi.org/10.5395/JKACD.2011.36.2.98

Theory of X-ray microcomputed tomography in dental research: application for the caries research  

Park, Young-Seok (Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute)
Bae, Kwang-Hak (Department of Preventive and Public Health Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
Chang, Ju-Hea (Clinic for Persons with Disabilities, Seoul National University Dental Hospital)
Shon, Won-Jun (Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute)
Publication Information
Restorative Dentistry and Endodontics / v.36, no.2, 2011 , pp. 98-107 More about this Journal
Abstract
Caries remains prevalent throughout modern society and is the main disease in the field of dentistry. Although studies of this disease have used diverse methodology, recently, X-ray microtomography has gained popularity as a non-destructive, 3-dimensional (3D) analytical technique, and has several advantages over the conventional methods. According to X-ray source, it is classified as monochromatic or polychromatic with the latter being more widely used due to the high cost of the monochromatic source despite some advantages. The determination of mineral density profiles based on changes in X-ray attenuation is the principle of this method and calibration and image processing procedures are needed for the better image and reproducible measurements. Using this tool, 3D reconstruction is also possible and it enables to visualize the internal structures of dental caries. With the advances in the computer technology, more diverse applications are being studied, such automated caries assessment algorithms.
Keywords
Caries diagnosis; Dental caries, Micro-CT; X-ray microcomputed tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater 2007;23:539-548.   DOI   ScienceOn
2 Jan J. Medical image processing, reconstruction and restoration: concepts and methods. New York: Taylor & Francis; 2006. p710.
3 Dufresne T. Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging. Technol Health Care 1998;6:351-359.
4 Chueh HS, Tsai WK, Fu HM, Chen JC. Evaluation of the quantitative capability of a homemade cone-beam micro computed tomography system. Comput Med Imaging Graph 2006;30:349-355.   DOI
5 Bonse U, Busch F, Gunnewig O, Beckmann F, Pahl R, Delling G, Hahn M, Graeff W. 3D computed X-ray tomography of human cancellous bone at 8 microns spatial and 10(-4) energy resolution. Bone Miner 1994;25:25-38.   DOI   ScienceOn
6 Neves Ade A, Coutinho E, Vivan Cardoso M, Jaecques SV, Van Meerbeek B. Micro-CT based quantitative evaluation of caries excavation. Dent Mater 2010;26:579-588. Epub 2010 Mar 29.   DOI   ScienceOn
7 Davis GR. Image quality and accuracy in X-ray micro-tomography. Proc SPIE 1999;3772:147-155.   DOI
8 Brooks RA, Di Chiro G. Beam hardening in X-ray reconstructive tomography. Phys Med Biol 1976;21:390-398.   DOI   ScienceOn
9 Van de casteele E, Van dyck D, Sijbers J, Raman E. A model-based correction method for beam hardening artefacts in X-ray microtomography. J X-ray Sci Technol 2004;12:43-57.
10 Van de Casteele E, Van Dyck D, Sijbers J, Raman E. The effect of beam hardening on resolution in X-ray microtomography. Med Imag 2004;5370:2089-2096.   DOI
11 Russ J. The image processing handbook. Boca Raton. CRC Press 2007:817.
12 Sijbers J, Postnov A. Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 2004;49:N247-N253.   DOI   ScienceOn
13 Smith BD. Image reconstruction from cone-beam projections: necessary and sufficient condition and reconstruction method. IEEE Trans Med Imaging 1985;4:14-25.   DOI   ScienceOn
14 Wang B, Hong Liub, Shiying Zhaoc and Ge Wangd Feldkamp-type image reconstruction from equiangular data. J Xray Sci Technol 2001;9:113-120.
15 Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation micro-tomography. Med Phys 2002;29:2672-2681.   DOI   ScienceOn
16 Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 1977;12:545-551.   DOI
17 Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 1980;4:493-500.   DOI   ScienceOn
18 Clementino-Luedemann TN, Kunzelmann KH. Mineral concentration of natural human teeth by a commercial micro-CT. Dent Mater J 2006;25:113-119.   DOI
19 Manly RS, Hodge HC, Ange LE: Density and refractive index studies of dental hard tissues. II. Density distribution curves. J Dent Res 1939;18:203-211.   DOI
20 Clementino-Luedemann TN, Dabanoglu A, Ilie N, Hickel R, Kunzelmann KH. Micro-computed tomographic evaluation of a new enzyme solution for caries removal in deciduous teeth. Dent Mater J 2006;25:675-683.   DOI
21 Bowman SM, Zeind J, Gibson LJ, Hayes WC, McMahon TA. The tensile behavior of demineralized bovine cortical bone. J Biomech 1996;29:1497-1501.   DOI   ScienceOn
22 Postnov AA, Vinogradov AV, Van Dyck D, Saveliev SV, de Clerck NM. Quantitative analysis of bone mineral content by X-ray microtomography. Physiol Meas 2003;24:165-178.   DOI   ScienceOn
23 Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 2000;15:1587-1595.   DOI   ScienceOn
24 Zheng Y, Lu WW, Zhu Q, Qin L, Zhong S, Leong JC. Variation in bone mineral density of the sacrum in young adults and its significance for sacral fixation. Spine 2000;25:353-357.   DOI   ScienceOn
25 Hammersberg P, Mangard M. Correction for beam hardening artefacts in computerised tomography. J X-ray Sci Technol 1998;8:75-93.
26 Joseph PM, Spital RD. The effects of scatter in X-ray computed tomography. Med Phys 1982;9:464-472.   DOI   ScienceOn
27 Wong FS, Elliott JC. Theoretical explanation of the relationship between backscattered electron and X-ray linear attenuation coefficients in calcified tissues. Scanning 1997;19:541-546.   DOI
28 Malusek A, Seger MM, Sandborg M, Carlsson G. Effect of scatter on reconstructed image quality in cone beam computed tomography: evaluation of a scatter-reduction optimisation function. Radiat Prot Dosimetry 2005;144:337-340.   DOI   ScienceOn
29 Elliott JC, Wong FS, Anderson P, Davis GR, Dowker SE. Determination of mineral concentration in dental enamel from X-ray attenuation measurements. Connect Tissue Res 1998;38:61-72. discussion 73-79.   DOI
30 Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 2002;17:1372-1382.   DOI   ScienceOn
31 Schweizer S, Hattendorf B, Schneider P, Aeschlimann B, Gauckler L, Muller R, Gunther D. Preparation and characterization of calibration standards for bone density determination by micro-computed tomography. Analyst 2007;132:1040-1045.   DOI
32 He LH, Standard OC, Huang TT, Latella BA, Swain MV. Mechanical behaviour of porous hydroxyapatite. Acta Biomater 2008;4:577-586.   DOI   ScienceOn
33 Zou W, Gao J, Jones AS, Hunter N, Swain MV. Characterisation of a novel calibration method for mineral density determination of dentine by Xray micro-tomography. Analyst 2009;134:72-79.   DOI
34 Kinney JH, Balooch M, Haupt DL Jr, Marshall SJ, Marshall GW Jr. Mineral distribution and dimensional changes in human dentin during demineralization. J Dent Res 1995;74:1179-1184.   DOI   ScienceOn
35 Dowker SE, Elliott JC, Davis GR, Wassif HS. Longitudinal study of the three-dimensional development of subsurface enamel lesions during in vitro demineralisation. Caries Res 2003;37:237-245.   DOI   ScienceOn
36 Willmott NS, Wong FS, Davis GR. An X-ray micro tomographystudy on the mineral concentration of carious dentine removed during cavity preparation in deciduous molars. Caries Res 2007;41:129-134.   DOI   ScienceOn
37 van de Casteele E, Van Dyck D, Sijbers J, Raman E. An energy-based beam hardening model in tomography. Phys Med Biol 2002;47:4181-4190.   DOI   ScienceOn
38 Dowker SE, Davis GR, Elliott JC. X-ray microtomography: nondestructive three dimensional imaging for in vitro endodontic studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;83:510-516.   DOI   ScienceOn
39 Dowker SE, Elliott JC, Davis GR, Wilson RM, Cloetens P. Synchrotron X-ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel. Caries Res 2004;38:514-522.   DOI   ScienceOn
40 Coljin AP, Zbijewski W, Sasov A, Beckman FJ. Experimental validation of a rapid Monte Carlo based micro-CT simulator. Phys Med Biol 2004;49:4321-4333.   DOI   ScienceOn
41 Sidky EY, Zou Y, Pan X. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods. Phys Med Biol 2004;49:2293-2303.   DOI   ScienceOn
42 Kyriakou Y, Kalender WA. X-Ray scatter data for flat-panel detector CT. Phys Med 2007;23:3-15.   DOI   ScienceOn
43 Davis GR, Elliott JC. Artefacts in X-ray microtomography of materials. Mater Sci Technol 2006;22:1011-1018.   DOI   ScienceOn
44 Wefel JS, Heilman JR, Jordan TH. Comparisons of in vitro root caries models. Caries Res 1995;29:204-209.   DOI   ScienceOn
45 Huysmans MC, Longbottom C. The challenges of validating diagnostic methods and selecting appropriate gold standards. J Dent Res 2004;83:C48-C52.   DOI   ScienceOn
46 Ten Bosch JJ, Angmar-Mansson B. A review of quantitative methods for studies of mineral content of intraoral caries lesions. J Dent Res 1991;70:2-14.   DOI   ScienceOn
47 Taylor AM, Satterthwaite JD, Ellwood RP, Pretty IA. An automated assessment algorithm for micro-CT images of occlusal caries. Surgeon 2010;8:334-340.   DOI   ScienceOn
48 Hahn SK, Kim JW, Lee SH, Kim CC, Hahn SH, Jang KT. Microcomputed tomographic assessment of chemomechanical caries removal. Caries Res 2004;38:75-78.   DOI   ScienceOn
49 Flannery BP, Deckman HW, Roberge WC, D'Amico KL. Three-dimensional X-ray microtomography. Science 1987;237:1439-1444.   DOI   ScienceOn
50 Huang TT, Jones AS, He LH, Darendeliler MA, Swain MV. Characterisation of enamel white spot lesions using x-ray micro-tomography. J Dent 2007;35:737-743.   DOI   ScienceOn
51 Efeoglu N, Wood D, Efeoglu C. Microcomputerised tomography evaluation of 10% carbamide peroxide applied to enamel. J Dent 2005;33:561-567.   DOI   ScienceOn
52 Kinney JH, Marshall GW Jr, Marshall SJ. Three-dimensional mapping of mineral densities in carious dentin: theory and method. Scanning Microsc 1994;8:197-205.
53 Kovacs M, Danyi R, Erdelyi M, Fejerdy P, Dobo-Nagy C. Distortional effect of beam-hardening artefacts on microCT: a simulation study based on an in vitro caries model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:591-599.   DOI   ScienceOn
54 Lo EC, Zhi QH, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent 2010;38:352-359. Epub 2010 Jan 14.   DOI   ScienceOn
55 Park YS, Yi KY, Lee IS, Jung YC. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin Oral Implants Res 2005;16:156-160. Erratum in: Clin Oral Implants Res 2005;16:258.   DOI   ScienceOn
56 Davis GR, Wong FS. X-ray microtomography of bones and teeth. Physiol Meas 1996;17:121-146.   DOI   ScienceOn
57 Efeoglu N, Wood DJ, Efeoglu C. Thirty-five percent carbamide peroxide application causes in vitro demineralization of enamel. Dent Mater 2007;23:900-904.   DOI   ScienceOn
58 Engelke K, Graeff W, Meiss L, Hahn M, Delling G. High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Invest Radiol 1993;28:341-349.   DOI
59 Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillofac Implants 2005;20:31-38.
60 Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721-728.   DOI   ScienceOn
61 Hsu DJ, Darling CL, Lachica MM, Fried D. Nondestructive assessment of the inhibition of enamel demineralization by $CO_2$ laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt 2008;13:054027.   DOI   ScienceOn
62 Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater 2009;90:802-812.   DOI   ScienceOn
63 Pitts NB. Modern concepts of caries measurement. J Dent Res 2004;83(Spec Iss C):C43-C47.   DOI   ScienceOn
64 Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ 2001;65:960-968.
65 Featherstone JD. The continuum of dental caries-evidence for a dynamic disease process. J Dent Res 2004;83(Spec Iss C):C39-C42.   DOI   ScienceOn
66 Kidd EA, Fejerskov O. What constitutes dental caries? histopathology of caries enamel and dentin related to the actions of cariogenic biofilms. J Dent Res 2004;83(Spec Iss C): C35-C38.   DOI   ScienceOn
67 Schwass DR, Swain MV, Purton DG, Leichter JW. A system of calibrating microtomography for use in caries research. Caries Res 2009;43:314-321.   DOI   ScienceOn
68 de Josselin De Jong E, Sundstrom F, Westerling H, Tranaeus S, ten Bosch JJ, Angmar-Mansson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res 1995;29:2-7.   DOI
69 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973;46:1016-1022.   DOI   ScienceOn
70 Wong FS, Willmott NS, Davis GR. Dentinal carious lesion in three dimensions. Int J Paediatr Dent 2006;16:419-423.   DOI   ScienceOn
71 Elliott JC, Dover SD. X-ray microtomography. J Microsc 1982;126:211-213.   DOI
72 Elliott JC, Davis GR, Anderson P, Wong FSL, Dowker SEP, Mercer CE. Application of laboratory microtomography to the study of mineralised tissues. Anal Quim 1997;93:77-82.
73 Minstry of Health and Welfare. National survey of oral health in 2006. Seoul, Korea Minsitry of Health and Welfare.
74 Wong FSL, Anderson P, Fan H, Davis GR. X-ray microtomographic study of mineral concentration distribution in deciduous enamel. Arch Oral Biol 2004;49:937-944.   DOI   ScienceOn
75 Kaste LM, Selwitz RH, Oldakowski RT, Brunelle JA, Winn D, Brown L. Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988-1991. J Dent Res 1996; 75(spec issue):631-641.   DOI
76 Winn DM, Brunelle JA, Selwitz RH, Kaste LM, Oldakowski RJ, Kingman A, Brown LJ. Coronal and root caries in the dentition of adults in the United States, 1988-1991. J Dent Res 1996;75(spec issue): 642-651.   DOI
77 Fontana M, Young DA, Wolff MS, Pitts NB, Longbottom C. Defining dental caries for 2010 and beyond. Dent Clin North Am 2010;54:423-440.   DOI   ScienceOn
78 Keene HJ. “History of dental caries in human populations: the First Million Years”animal models in cariology. In: Tanzer JM, editor. Proceedings, Animal Models in Cariology. Washington, DC: Information Retrieval Inc 1981:23-40.