• 제목/요약/키워드: micro bone fracture

검색결과 31건 처리시간 0.027초

Image J를 활용한 뼈의 노화도 예측법 (Prediction of Bone Aging by Adapting Image J)

  • 정홍문;원도연;정재은
    • 대한디지털의료영상학회논문지
    • /
    • 제14권2호
    • /
    • pp.63-67
    • /
    • 2012
  • Calcium density in human bones decreases as people are getting older due to the interior or exterior environmental factors. Bone aging forms osteoporosis. And this can bring out various spine fractures which develops a complications. Thus the prediction of seniliy is one of the important factors in spine diseases. Once spine aged, diverse fractures occur such as compression fracture and micro fracture. Side images of the spine by the digital radiography (DR) were prepared, and pixel arbitrary unit with Image J was measured from one spot in the lumbar bone part. By calculating pixel arbitrary unit of the simple contrast, it was obtained that the value of pixel arbitrary unit decreased as seniliy of bones increased. By simply applying Image J to the seniliy of patient's spine, the seniliy of bones predicts the level of danger with only digital radiography(2D) image. consequently we show that Image J value of pixel arbitrary unit index for predicts the level of precaution of osteoporosis patient.

  • PDF

전이성 골암에 의한 해면골의 미세구조와 골화 분포 변화 (Longitudinal Alterations of Microarchitecture and Mineralization Distribution on Trabecular Bone Due to Metastatic Bone Tumor)

  • 박선욱;전옥희;고창용;김지현;김한성;전경진;임도형
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권5호
    • /
    • pp.444-451
    • /
    • 2009
  • Purpose: The aim of present study is to detect longitudinal alterations of mechanical characteristic determined by bone quality (microarchitecture and degree of mineralization) on femur trabecular bone due to metastatic bone tumor Materials and Methods: Each 6 female SD rats (12 weeks old, approximate 250g) were allocated in SHAM and TUMOR Group. W256 (Walker carcinosarcoma 256 malignant breast cancer cell) was injected into the right femur (intraosseous injection) in TUMOR Group, whereas 0.9% NaCl (saline solution) was injected in SHAM Group. The right hind limbs of all rats were scanned by in-vivo micro-CT to acquire structural parameters, bone mineral density, X-ray attenuation and bone mineralization distribution at 0 week and 4 weeks after surgery. Results: BMD, BV/TV and Tb.N of trabecular bone in TUMOR group were markedly decreased (26%, 11% and 23%) while those in SHAM group were significantly increased (34%, 48% and 11%) (p<0.05). BS/BV, Tb.Sp and SMI in TUMOR group were significantly increased (-16%, 38% and 2%) compared with those in SHAM group (-33%, 12% and -16%) (p<0.05). Additionally, bone mineralization in TUMOR group significantly decreased while those in SHAM group was significantly increased (p<0.05). Conclusion: It is identified that how much bone microarchitecture and mineralization are diminished due to the metastatic bone tumor. The results may be helpful to prediction of fracture risk by metastatic bone tumor.

Energy-dispersive X-ray spectroscopic investigation of a fractured non-submerged dental implant associated with abutment fracture

  • Truc Thi Hoang Nguyen;Mi Young Eo;Kezia Rachellea Mustakim;Mi Hyun Seo;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권1호
    • /
    • pp.43-48
    • /
    • 2023
  • The biocompatibility and durability of implant fixtures are major concerns for dentists and patients. Mechanical complications of the implant include abutment screw loosening, screw fracture, loss of implant prostheses, and implant fracture. This case report aims to describe management of a case of fixture damage that occurred after screw fracture in a tissue level, internal connection implant and microscopic evaluation of the fractured fixture. A trephine bur was used to remove the fixture, and the socket was grafted using allogeneic bone material. The failed implant was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), which revealed a fractured fixture with both normal and irregular bone patterns. The SEM and EDS results give an enlightenment of the failed fixture surface micromorphology with microfracture and contaminated chemical compositions. Noticeably, the significantly high level of gold (Au) on the implant surface and the trace amounts of Au and titanium (Ti) in the bone tissue were recorded, which might have resulted from instability and micro-movement of the implant-abutment connection over an extended period of time. Further study with larger number of patient and different types of implants is needed for further conclusion.

The biomechanical and biological effect of supercooling on cortical bone allograft

  • MuYoung Kim ;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.79.1-79.16
    • /
    • 2023
  • Background: The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. Objectives: The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. Methods: The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. Results: The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. Conclusions: Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.

Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis

  • Ali, Benouis;Boualem, Serier;Smail, Benbarek
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권4호
    • /
    • pp.197-206
    • /
    • 2015
  • This paper presents three-dimensional finite element method analyses of the distribution of equivalents stress of Von Mises. Induced around a cavity located in the bone cement polymethylmethacrylate (PMMA). The presences and effect of its position in the cement was demonstrated, thus on the stress level and distribution. The porosity interaction depending on their positions, and their orientations on the interdistances their mechanical behaviour of bone cement effects were analysed. The obtained results show that micro-porosity located in the proximal and distal zone of the prosthesis is subject to higher stress field. We show that the breaking strain of the cement is largely taken when the cement, containing the porosities very close adjacent to each other.

치과용 초음파 수술기의 절삭성능 평가를 위한 핸드피스 이송 시스템 구축 (Development of Handpiece Moving System (HMS) for Cutting Performance Evaluation of Dental Ultrasonic Surgery Unit)

  • 사민우;심해리;고태조;이종민;김종영
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.377-383
    • /
    • 2016
  • Recently, research on bone fracture and osteoplasty using ultrasonic bone surgery unit has been ongoing in the fields of dentistry, plastic surgery, and otorhinolaryngology. However, detailed data evaluation with ultrasonic bone surgery unit has not been conducted to date. In this study, we developed handpiece moving system (HMS) for cutting performance evaluation. In the experimental setup of HMS, a handpiece was immobilized, and bone samples from cortical bone of bovine leg were prepared. Also, the experimental process was described in detail, and a basic experiment was carried out to evaluate the cutting performance. Future study is required on all experimental process conditions by HMS.

Diabetes disrupts osteometric and trabecular morphometric parameters in the Zucker Diabetic Sprague-Dawley rat femur

  • Robert Ndou;Vaughan Perry;Gcwalisile Frances Dlamini
    • Anatomy and Cell Biology
    • /
    • 제57권2호
    • /
    • pp.294-304
    • /
    • 2024
  • Type 2 diabetes mellitus is increasingly becoming more prevalent worldwide together with hospital care costs from secondary complications such as bone fractures. Femoral fracture risk is higher in diabetes. Therefore, this study aimed to assess the osteometric and microarchitecture of the femur of Zucker Diabetic Sprague-Dawley (ZDSD) femur. Ten-week-old male rats (n=38) consisting of 16 control Sprague-Dawley (SD) and 22 ZDSD rats were used. The rats were terminated at 20 weeks and others at 28 weeks of age to assess age, diabetes duration effects and its severity. Bilateral femora were taken for osteometry, bone mass measurements and micro-focus X-ray computed tomography scanning to assess the trabecular number (TbN), thickness (TbTh), spaces (TbSp), bone tissue volume to total volume (BV/TV) and volume (BV). Diabetic rats had shorter (except for 20-weeks-old), lighter, narrower, and less robust bones than SD controls that wered more robust. Although cortical area was similar in all diabatic and control rats, medullary canal area was the largest in ZDSD rats. This means that the diabetic rats bones were short, light and hollow. Diabetic rats aged 20 weeks had reduced BV, BV/TV, TbN with more spacing (TbSp). In contrast, the 28 weeks old diabetic rats only showed reduced BV and TbN. Discriminant function analysis revealed, for the first time, that osteometric parameters and TbTh, TbN, and TbSp were affected by diabetes. This knowledge is valuable in the management of diabetic complications.

생체 외 조건의 소 대퇴골 해면질골에서 음향특성과 골밀도 사이의 상관관계 (Correlations between Acoustic Properties and Bone Mineral Density in Bovine Femoral Trabecular Bone In Vitro)

  • 황교승;서동완;이강일
    • 한국음향학회지
    • /
    • 제31권4호
    • /
    • pp.244-252
    • /
    • 2012
  • 본 연구의 목적은 골절 위험도가 높은 대퇴골에서 음속 및 광대역 초음파 감쇠와 같은 음향특성과 골밀도 사이의 상관관계를 조사하는 것이다. 이를 위해 0.5 및 1.0 MHz의 중심주파수를 갖는 두 쌍의 초음파 트랜스듀서와 함께 투과법을 이용하여 생체 외 조건에서 15개의 소 대퇴골 해면질골 샘플의 음속 및 광대역 초음파 감쇠를 측정하였다. 또한 마이크로 컴퓨터 단층촬영법을 이용하여 해면질골 샘플의 단위체적당 골밀도를 측정하였다. 골밀도는 0.5 및 1.0 MHz 초음파 트랜스듀서를 이용하여 측정된 음속 및 광대역 초음파 감쇠와 모두 강한 상관관계를 나타냈으며, 골밀도와 0.5 MHz 초음파 트랜스듀서를 이용하여 측정된 광대역 초음파 감쇠 사이에 가장 높은 상관관계가 존재하였다. 이와 같은 결과는 생체 외 조건의 대퇴골에서 측정된 음향특성이 대퇴골의 골밀도를 예측하기에 충분한 지표라는 것을 의미한다.

저강도 초음파 조사 부위의 골 소실 억제 효과 -골 밀도 및 형태학적 특성 평가 (Suppression of Osteoporotic bone loss on the site to which low Intensity Ultrasound is Irradiated - In vivo test on BMD and Morphological Characteristics)

  • 고창용;서동현;김효선;김한성;김상희;김진만;김기원;임도형
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권1호
    • /
    • pp.49-55
    • /
    • 2009
  • Purpose : The aim of this study is to evaluate a possibility of clinical application for the effects of low intensity ultrasound stimulation (LIUS) in morphological characteristics (i.e., structure, bone mineral density) of bone on osteoporotic fracturesprevention. Materials and Methods : Eight virgin 14-week-old ICR mice (approximate weight 25g) were used and ovariectomized (OVX) to induce osteoporosis. Right tibia (US) for each mouse served as the LIUS (1.5MHz frequency, 1.0 kHz pulse repetition on frequency, $30mW/cm^2$ intensity, $200{\mu}s$ pulse length, and stimulation for 20 minutes a day and 5 days a week over a 6-week period). Left tibia (CON) for each mouse served as the non-stimulated controls. Structural parameters and bone mineral density ($g/cm^3$) on trabecular bone of tibiae were calculated and measured from images derived in-vivo micro computed tomography (micro-CT) at 0 week and after 6weeks. Results : The BV/TV and Tb.N in US group were significantly bigger than those in CON group. The Tb.Pf in US group, moreover, was significantly smaller than that in CON group (p<0.05).For the others structural parameters and BMD, however, there were no significant difference between US group and CON group (p>0.05). Conclusion : The LIUS might prevent bone loss and keep bone connectivity in osteoporotic bones. Therefore, the LIUS might prevent effectively the osteoporotic fractures in clinics.

Bone Regenerative Effects of Biphasic Calcium Phosphate Collagen, Bone Morphogenetic Protein 2, Mesenchymal Stem Cells, and Platelet-Rich Plasma in an Equine Bone Defect Model

  • Eun-bee Lee;Hyunjung Park;Jong-pil Seo
    • 한국임상수의학회지
    • /
    • 제40권2호
    • /
    • pp.85-92
    • /
    • 2023
  • Fractures in the horse industry are challenging and a common cause of death in racehorses. To accelerate fracture healing, tissue engineering (TE) provides promising ways to regenerate bone tissues. This study aimed to evaluate the osteogenic effects of biphasic calcium phosphate collagen (BCPC) graft, bone morphogenetic protein 2 (BMP2), mesenchymal stem cell (MSC), and platelet-rich plasma (PRP) treatments in horses. Four thoroughbred horses were included in the study, and, in each horse, three cortical defects with a diameter of 5 mm and depth of 10 mm were formed in the third metacarpal bones (MC) and metatarsal bones (MT). The defects were randomly assigned to one of six treatment groups (saline, BCPC, BMP2, MSC, PRP, and control). Injections of saline, BMP2, PRP, or MSCs were made at 1, 3, and 5 weeks after defect surgery. Bone regeneration effects were assessed by radiography, quantitative computed tomography (QCT), micro-computed tomography (μCT), histopathological, and histomorphometric evaluation. The new bone ratio (%) in the histomorphometric evaluation was higher in the BMP2 group than in the control and saline groups. Radiographic and QCT values were significantly higher in the BCPC groups than in the other groups. QCT values of the BMP2 group were significantly higher than in the control and saline groups. The present study demonstrated that BCPC grafts were biologically safe and showed osteoconductivity in horses and the repeated injections of BMP2 without a carrier can be simple and promising TE factors for treating horses with bone fractures.