DOI QR코드

DOI QR Code

The biomechanical and biological effect of supercooling on cortical bone allograft

  • MuYoung Kim (Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine) ;
  • Hun-Young Yoon (Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University)
  • Received : 2023.07.11
  • Accepted : 2023.09.13
  • Published : 2023.11.30

Abstract

Background: The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. Objectives: The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. Methods: The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. Results: The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. Conclusions: Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.

Keywords

References

  1. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132(1):15-30.
  2. Grover V, Kapoor A, Malhotra R, Sachdeva S. Bone allografts: a review of safety and efficacy. Indian J Dent Res. 2011;22(3):496.
  3. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-124. https://doi.org/10.4161/org.23306
  4. Nie Z, Wang X, Ren L, Kang Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen Med. 2020;15(4):1519-1534. https://doi.org/10.2217/rme-2019-0125
  5. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77-86. https://doi.org/10.5435/00124635-200501000-00010
  6. van Isacker T, Barbier O, Traore A, Cornu O, Mazzeo F, Delloye C. Forearm reconstruction with bone allograft following tumor excision: a series of 10 patients with a mean follow-up of 10 years. Orthop Traumatol Surg Res. 2011;97(8):793-799. https://doi.org/10.1016/j.otsr.2011.05.017
  7. Amini Z, Lari R. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell. 2021;69:101494.
  8. Samsell B, Softic D, Qin X, McLean J, Sohoni P, Gonzales K, et al. Preservation of allograft bone using a glycerol solution: a compilation of original preclinical research. Biomater Res. 2019;23:5.
  9. Ferreira MP, Alievi MM, Beck CA, Dal-Bo IS, Gonzalez PC, Nobrega FS, et al. Comparison of lyophilization, and freezing in honey as techniques to preserve cortical bone allografts used to repair experimental femoral defects in domestic adult cats. Arq Bras Med Vet Zootec. 2012;64(2):263-273. https://doi.org/10.1590/S0102-09352012000200003
  10. Graham RS, Samsell BJ, Proffer A, Moore MA, Vega RA, Stary JM, et al. Evaluation of glycerol-preserved bone allografts in cervical spine fusion: a prospective, randomized controlled trial. J Neurosurg Spine. 2015;22(1):1-10. https://doi.org/10.3171/2014.9.SPINE131005
  11. Andrade MG, Sa CN, Marchionni AM, dos Santos Calmon de Bittencourt TC, Sadigursky M. Effects of freezing on bone histological morphology. Cell Tissue Bank. 2008;9(4):279-287. https://doi.org/10.1007/s10561-008-9065-4
  12. Bottino MC, Jose MV, Thomas V, Dean DR, Janowski GM. Freeze-dried acellular dermal matrix graft: effects of rehydration on physical, chemical, and mechanical properties. Dent Mater. 2009;25(9):1109-1115. https://doi.org/10.1016/j.dental.2009.03.007
  13. Lander SL, Brits D, Hosie M. The effects of freezing, boiling and degreasing on the microstructure of bone. Homo. 2014;65(2):131-142. https://doi.org/10.1016/j.jchb.2013.09.006
  14. Sohoni P, Morris AR, Balsly CR, Cotter AT, Sander TW. The effects of a new preservation method on the biomechanics and shelf life of allograft bone. In: Proceedings of the Orthopaedic Research Society Annual Meeting; Long Beach; January 13-16, 2011. Rosemont: Orthopaedic Research Society; 2011, 1452. 
  15. Giovani AM, Croci AT, Oliveira CR, Filippi RZ, Santos LA, Maragni GG, et al. Comparative study of cryopreserved bone tissue and tissue preserved in a 98% glycerol solution. Clinics (Sao Paulo). 2006;61(6):565-570. https://doi.org/10.1590/S1807-59322006000600013
  16. Moore MA, Balsly CR, Ruth KL, Wolfinbarger L. The effects of an alternate preservation method on the biomechanical strength of allograft tissue. In: Proceedings of the Orthopaedic Research Society Annual Meeting; San Francisco; March 2-5, 2008. Rosemont: Orthopaedic Research Society; 2008, 1067. 
  17. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine (Phila Pa 1976). 2004;29(6):660-666. https://doi.org/10.1097/01.BRS.0000116588.17129.B9
  18. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976). 2012;37(12):1083-1091. https://doi.org/10.1097/BRS.0b013e31823ed817
  19. Feng HM. Local irritation and cytotoxicity study of glycerol as pharmaceutical excipient. Chin Pharm J. 2019;24:42-46. 
  20. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, et al. Re-evaluation of glycerol (E 422) as a food additive. EFSA J. 2017;15(3):e04720.
  21. Robertson SM, Lawrence AL, Neill WH, Arnold CR, McCarty G. Toxicity of the cryoprotectants glycerol, dimethyl sulfoxide, ethylene glycol, methanol, sucrose, and sea salt solutions to the embryos of red drum. Prog Fish-Cult. 1988;50(3):148-154. https://doi.org/10.1577/1548-8640(1988)050<0148:TOTCGD>2.3.CO;2
  22. Rodas AC, Maizato MJ, Leirner AA, Pitombo RN, Polakiewicz B, Beppu MM, et al. Cytotoxicity and genotoxicity of bovine pericardium preserved in glycerol. Artif Organs. 2008;32(4):272-276. https://doi.org/10.1111/j.1525-1594.2008.00542.x
  23. William N, Acker JP. High sub-zero organ preservation: a paradigm of nature-inspired strategies. Cryobiology. 2021;102:15-26. https://doi.org/10.1016/j.cryobiol.2021.04.002
  24. Bruinsma BG, Berendsen TA, Izamis ML, Yeh H, Yarmush ML, Uygun K. Supercooling preservation and transplantation of the rat liver. Nat Protoc. 2015;10(3):484-494. https://doi.org/10.1038/nprot.2015.011
  25. Kang T, You Y, Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Sci Biotechnol. 2020;29(3):303-321. https://doi.org/10.1007/s10068-020-00750-6
  26. Kim MY, Yoon HY, Lee S. The advantage of the supercooling storage method for transplantable sources: human umbilical vessel endothelial cells and mouse skin grafts. Transplant Proc. 2021;53(5):1756-1761. https://doi.org/10.1016/j.transproceed.2021.03.042
  27. Basco MT, Yiu WK, Cheng SW, Sumpio BE. The effects of freezing versus supercooling on vascular cells: implications for balloon cryoplasty. J Vasc Interv Radiol. 2010;21(6):910-915. https://doi.org/10.1016/j.jvir.2010.02.016
  28. Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE. Effect of supercooling and cell volume on intracellular ice formation. Cryobiology. 2015;70(2):156-163. https://doi.org/10.1016/j.cryobiol.2015.02.002
  29. Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA. Biochemical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br. 1996;78(3):363-368. https://doi.org/10.1302/0301-620X.78B3.0780363
  30. Nather A, Thambyah A, Goh JC. Biomechanical strength of deep-frozen versus lyophilized large cortical allografts. Clin Biomech (Bristol, Avon). 2004;19(5):526-533. https://doi.org/10.1016/j.clinbiomech.2004.01.010
  31. Stasiak KL, Maul D, French E, Hellyer PW, VandeWoude S. Species-specific assessment of pain in laboratory animals. Contemp Top Lab Anim Sci. 2003;42(4):13-20.
  32. Yang CY, Simmons DJ, Lozano R. The healing of grafts combining freeze-dried and demineralized allogeneic bone in rabbits. Clin Orthop Relat Res. 1994;298:286-295. https://doi.org/10.1097/00003086-199401000-00038
  33. Jalila A, Redig PT, Wallace LJ, Ogema TR, Bechtold JE, Kidder L. The effect of chicken, pigeon, and turkey demineralized bone matrix (DBM) implanted in ulnar defects fixed with the intramedullary-external skeletal fixator (IM-ESF) tie-in in pigeons (Columba livia): histological evaluations. Med J Malaysia. 2004;59 Suppl B:125-126.
  34. Stacy GS, Ahmed O, Richardson A, Hatcher BM, MacMahon H, Raman J. Evaluation of sternal bone healing with computed tomography and a quantitative scoring algorithm. Open Med Imaging J. 2014;8(1):29-35. https://doi.org/10.2174/1874347101408010029
  35. Gomez-Barrena E, Padilla-Eguiluz NG, Garcia-Rey E, Hernandez-Esteban P, Cordero-Ampuero J, Rubio-Suarez JC, et al. Validation of a long bone fracture non-union healing score after treatment with mesenchymal stromal cells combined to biomaterials. Injury. 2020;51(1 Suppl 1):S55-S62. https://doi.org/10.1016/j.injury.2020.02.030
  36. Baroud G, Bohner M. Biomechanical impact of vertebroplasty. Postoperative biomechanics of vertebroplasty. Joint Bone Spine. 2006;73(2):144-150. https://doi.org/10.1016/j.jbspin.2005.02.004
  37. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89(5):574-579. https://doi.org/10.1302/0301-620X.89B5.19039
  38. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg. 2014;9(1):18. 
  39. Yin L, Venkatesan S, Webb D, Kalyanasundaram S, Qin QH. Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue. Mater Charact. 2009;60(8):783-791. https://doi.org/10.1016/j.matchar.2009.01.004
  40. Voggenreiter G, Ascherl R, Blumel G, Schmit-Neuerburg KP. Effects of preservation and sterilization on cortical bone grafts. A scanning electron microscopic study. Arch Orthop Trauma Surg. 1994;113(5):294-296. https://doi.org/10.1007/BF00443821
  41. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res. 2000;18(3):426-431. https://doi.org/10.1002/jor.1100180314
  42. Ozcelikkale A, Han B. Thermal destabilization of collagen matrix hierarchical structure by freeze/thaw. PLoS One. 2016;11(1):e0146660.
  43. Armitage J. Cryopreservation for corneal storage. Dev Ophthalmol. 2009;43:63-69. https://doi.org/10.1159/000223839
  44. Yin LJ, Chen ML, Tzeng SS, Chiou TK, Jiang ST. Properties of extracellular ice-nucleating substances from Pseudomonas fluorescens MACK-4 and its effect on the freezing of some food materials. Fish Sci. 2005;71(4):941-947. https://doi.org/10.1111/j.1444-2906.2005.01048.x