• Title/Summary/Keyword: method of fundamental solution

Search Result 244, Processing Time 0.028 seconds

An Analysis of Stress Intensity Factors of Composite Materials by Boundary Element Method (BEM) (경계요소법(BEM)에 의한 복합재료의 응력확대계수 해석)

  • 이갑래;조상봉;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.179-189
    • /
    • 1991
  • Composite materials are generally treated as anisotropic or an orthotropic materials. Unlike isotropic materials, the orthotropic materials can divided three groups depending upon the relationship of the four material constants or depending upon the characteristic roots of orthotropic materials. In particular, the fundamental solutions of two dimensional BEM for composite materials (orthotropic or anisotropic material) generally have a singularity in the conventional method when the characteristic roots are equal. In consideration of this singularity in the conventional method when the characteristic roots are equal. In consideration of this singular problems, in this paper, the fundamental solutions of BEM are systematically analysed for orthotropic materials. And the stress and displacement fields for a crack in an orthotropic materials are singular when the characteristic roots of orthotropic materials are equal. Therefore, these fields for a crack in an orthotropic materials are analysed by the analogous method to isotropic materials when the characteristic roots are equal.

APPROXIMATE REACHABLE SETS FOR RETARDED SEMILINEAR CONTROL SYSTEMS

  • KIM, DAEWOOK;JEONG, JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.469-481
    • /
    • 2020
  • In this paper, we consider a control system for semilinear differential equations in Hilbert spaces with Lipschitz continuous nonlinear term. Our method is to find the equivalence of approximate controllability for the given semilinear system and the linear system excluded the nonlinear term, which is based on results on regularity for the mild solution and estimates of the fundamental solution.

Algorithms for Determining the Geostationary Satellite Orbital Positions (정지궤도 위성의 궤도 선정을 위한 알고리즘)

  • Kim Soo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.177-185
    • /
    • 2005
  • We consider the optimization problem of the geostationary satellite orbital positions. which is very fundamental and important in setting up the new satellite launching plan. We convert the problem into a discrete optimization problem. However, the converted problem is too complex to find an optimal solution. Therefore, we develope the solution procedures using simulated annealing technique. The results of applying our method to some examples are reported.

Optimum design of laterally-supported castellated beams using CBO algorithm

  • Kaveh, A.;Shokohi, F.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.305-324
    • /
    • 2015
  • In this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. These types of open-web beams have found widespread use, primarily in buildings, because of great savings in materials and construction costs. Hence, the minimum cost is taken as the design objective function and the Colliding Bodies Optimization (CBO) method is utilized for obtaining the solution of the design problem. The design methods used in this study are consistent with BS5950 Part 1 and Part 3, and Euro Code 3. A number of design examples are considered to optimize by CBO algorithm. Comparison of the optimal solution of the CBO algorithm with those of the Enhanced Charged System Search (ECSS) method demonstrate the capability of CBO in solving the present type of design problem. It is also observed that optimization results obtained by the CBO algorithm for three design examples have less cost in comparison to the results of the ECSS algorithm. From the results obtained in this paper, it can be concluded that the use of beam with hexagonal opening requires smaller amount of steel material and it is superior to the cellular beam from the cost point of view.

In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.793-800
    • /
    • 2006
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration fur circular curved beams including both rotatory inertia and shear deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Analysis of Mixed Mode Surface Crack in Finite-Width Plate Subjected to Uniform Shearing by Boundary Element Method (경계요소법에 의한 포물선형 인장과 비틀림을 받는 유한폭 판재의 혼합 Mode 표면균열에 대한 해석)

  • Park, Seong-Wan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.103-116
    • /
    • 1990
  • The mixed mode surface crack in finite-width plate subjected to uniform shearing has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles (${\alpha}$) of $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, and 75^{\circ}, $ and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this in this study. Comparison of the results from both method showed good agreement.

  • PDF

Analysis of Mixed Mode Surface Crack in Finite-Width Plate Subjected to Uniform Shearing by Boundary Element Method (경계요소법에 의한 포물선형 인장과 비틀림을 받는 유한폭 판재의 혼합 Mode 표면균열에 대한 해석)

  • Park, Seong-Wan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.117-129
    • /
    • 1990
  • The mixed mode surface crack in finite-width plate subjected to uniform shearing has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles (${\alpha}$) of $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, and 75^{\circ}, $ and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this in this study. Comparison of the results from both method showed good agreement.

  • PDF

Near field Analysis of HTS Microstrip Antenna using Finte Element Method (유한요소법을 이용한 고온초전도 마이크로스트립 안테나 주변 저.자장 해석)

  • 정동철;박성진;허원일;한병성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.324-327
    • /
    • 1995
  • In this research, FEM solution to analysis near field of high Tc superconductor microstrip antenna is presented. This method uses the interpolation function with vector edge triangular element. The advantage of this element is elimination of spurious solutions which are attributed to the lack of enforcement of the divergence condition. The solutions of this method will be used to have a good fundamental data for next reaserch about analysis of HTS microstrip array antenna etc.

  • PDF

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

Fundamental Study on the Limit of Thermographic Survey Applied to Detection of Void in Concrete (적외선법을 이용한 콘크리트 공동의 적용한계에 관한 기초적 연구)

  • ;Tanigawa Yasuo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.799-806
    • /
    • 1999
  • This study describes the results of experiment and numerical analysis for heating image by thermographic method when the size of void in concrete are changed. By comparing analytical solution by finite element method with measured image by thermography, the relationships between the surface temperature which can be confirmed by this method, the size of void and optimum time for detection of void and the difference of temperature are cleared.

  • PDF