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Algorithms for Determining the Geostationary Satellite
Orbital Positions
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« Abstract =

We consider the optimization problem of the geostationary satellite orbital positions, which is very fundamental
and important in setting up the new satellite launching plan. We convert the problem into a discrete optimization
problem, However, the converted problem is too complex o find an optimal solution, Therefore, we develope the solution
procedures using simutated annealing technigue. The results of applying our method to some examples are reported.
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1. Introduction

Geostationary orbit is considered as a kind
of natural resource which must be shared with
all nations. However, due to the rapid increase
of the number of geostationary satellites, the
use of the geostationary satellite orbit by sat-
ellites sharing the same frequency band leads

to an interference environment. It is called in-
tersatellite interference, more precisely, inter-
ference between geostationary satellite net-
works. It should be properly analyzed to allow
for an adequate and efficient use of the avail-
able orbit and spectrum resources. An effec—
tive means is highly required to reduce this
interference so as to accommodate as many
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satellites as possible in the geostationary orbit
while keeping the interference level within the
predetermined criteria.

Several studies concerning the efficient use
of orbital and spectral resources have been
made [4, 6, 10,11, 13]. With increasing numbers
of satellites in orbit, the use of more sophisti-
cated techniques to optimize satellite orbital
positions has become necessary, particularly in
congested segments of the geostationary orbit.

In applying optimization methods to identify
orbital positions, one would, in general, use an
objective function which is usually related to
one of two basic criteria. The first criterion
would be to minimize the total occupied orbital
arc, implying interference levels which are
close to the maximum allowed level [6]. The
second criterion would be to minimize the in-
terference levels, disregarding the orbital arc
effectively used [4]. However, the first crite-
rion seems to be inadequate for application in
practical situations where the orbital positions
of satellites must usually satisfy arc constra-
ints imposed by either technical or political re-
asons.

In this paper, we propose the optimization me-
thods which use an objective function related
to the second criterion. The methods are based
on the idea of minimizing the aggregate inter-
ference levels. This criterion has been applied
by Fortes, et al. [4], but it is not like ours. We
think that our criterion seems to be adequate
in practical situations because some assump-
tions, which are not necessary here, were made
in [4]. In particular, the assumption that the
ordering of satellites is prefixed is not practical.

Our optimization criterion function is non-

linear and does not have a special mathemat-

ical property (ie convexity) on which non-
linear optimization technique works well. The-
refore, we use the approach which divides the
orbit into a number of equal-sized segments.
That is, the original problem is converted into
a discrete optimization problem. However, it is
still difficult to find an optimal solution for the
converted problem. In this paper, we apply the
Simulated Annealing method to this converted
discrete optimization problem.

This paper is organized in the following way.
In Section 2, the problem is defined and for-
mulated. The solution procedure using simu-
lated annealing is described in Section 3. Sec-
tion 4 shows the demonstration of the solution
quality of our method. Section 5 concludes the

paper.

2. Problem Formulation

2.1 Interference Evaluation

To analyze the interference into or from an
adjacent satellite system, let us consider the
satellite link and interference paths (dotted ar-
rows) between two satellite networks { and j
in [Figure 1] [11.

[Figure 11 Intersatellite interference



Let j be the existing satellite network and i
be the proposed new satellite network. Then
the satellite network i is affected by two in-
terference sources : the uplink interference si-
gals from earth stations in the existing satel-
lite network j and the downlink interference
signals coming from satellite j. The total car-
rier-to-interference ratio due to these two in-
terference sources represents the interference
generated by the existing satellite network j
into the proposed satellite network i. The total
carrier-to-interference ratio in satellite net-
work i caused by the adjacent satellite net-
work j is

__tcin, _ e,
(C/I)ﬁ=—1010g[10 L S U
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where (C/I), is the uplink carrier-to-inter-
ference ratio and (C/D, is the downlink car-
rier-to-interference ratio.

Let us consider the general situation in which
n satellites are placed side by side in the geo-
stationary satellite orbit, sharing a common
band of the frequency spectrum. Then, we have
to aggregate the effect of multiple interfering
satellites. Hence, the aggregate carrier-to~in-
terference ratio in satellite network i caused by
the adjacent satellite networks is

</

(C/I)i=~1010g[§i10 10 ] [dB].

To guarantee the service quality, satellite sys-
tems define the minimum carrier-to-interfer-
ence ratio which is called required carrier-
to~interference ratio. Then, the difference be-
tween the actual carrier-to-interference ratio
and the required carrier-to-interference ratio
means the degree of quality. The difference is
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called margin, that is, the margin of satellite i
(denoted by MG; ) is evaluated by subtracting
the required (C/D; from the actual (C/I);,

2.2 Formulation

Let us assume that the total number of sat-
ellite networks is n, which includes the pro-
posed ones. let us also assume that all the
satellites of proposed networks have the orbi-
tal upper and lower boundaries, and all the
satellites of existing networks, of course, are
fixed on their orbital positions. It is quite
common that the preferable satellite position is
preassigned by a satellite owner and the satel-
lite location is fixed after it is launched. These
kinds of constraints are very important in pra-
ctical applications. In this paper, we consider
three cases as follows.

A. (Case 1)

First, the case where the number of pro-
posed networks is only one. This case is ap-
plicable to determine the orbital position of a
new satellite which is ready to give the com-
munications services. In this case, n-1 satel-
lites’ location are prefixed and the location for
new proposed satellite i has to be determined.

(CD) max { f(x;) | x;< 6/, x; 2 6"}

where 0™ and 0™ denote, respectively,
the upper and lower limits of the possible sat-
ellite position for network i, x; is the orbital

position of satellite {, and f(x) is MG,

B. (Case 2)
Second, the case where all networks are the

proposed ones. When new orbit is assigned to
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each of nations, the results of this case can be
utilized. In this case, any network 1s not pre-
fixed and we have to identify orbital positions
for them.

(Cz) max{f(x)lx,S Himax,x,‘z ﬁimi", 7= 1, e, n}

where x is a vector on orbital longitudes of
the n networks, f(x) is min {/(x), . f,(0)},
and fi(x) is MG; .

C. (Case 3)

Third, the case where the number of pro-
posed networks is between two and n-1. This
case is very useful for the adjustment of orbi-
tal positions among the proposed networks. In
this case, p(1<p <{n) networks are not pre-
fixed and we have to identify orbital positions
for them.

(C3) max {f(x)x;< 0™, x,2 0™, i=1,, p}

where x iIs a vector on orbital longitudes of
the n networks, f(») is min {/i(x),", f,(x)},
and fi{(x) is MG;.

3. Algorithms
3.1 Case 1
1k

f(x,)

L1 | | Ly «
min emax'
CH X, Xy Xg /

[Figure 2] An example of f(x»)

[Figure 2] shows that the transition of ob-

jective value as *:, e, the orbital position of

satellite i, increases from 6™ to 6. We
observe that the objective value is local mini-
mum when satellite { has the orbital position
at %1, %;or %3, which are the orbital posi-
tions of the existing satellites. The interval
between 6™ and 6/ is divided into four
sub-intervals such as [ 8™, %], [ %1, *2], [ %2,

%3], and [ #3, 6;"*]. Note that an unique local
maximum exists in each sub-interval. That is,
the objective function is strictly unimodal in
this sub-interval.

Therefore, we can find a maximum over
this sub-interval fast by applying an efficient
search algorithm such as Fibonacci method
[2]. Assume that the number of this sub-in-

tervals between 6™ and 6™ is 7,+1, where
n; is the number of existing satellites be-
tween 6™ and 6. Then, we come to find
ngs+1 local maximums over these sub-inter-

vals. Among these, the largest one is an ap-
proximated solution to the problem (C1).

3.2 Case 2

Problem (C2) has a nonlinear objective func-
tion and does not have a special mathematical
property. Therefore, to handle this case, the
orbit is uniformly divided into a number of
discrete segments. The unit width of a seg-
ment can be arbitrarily determined. The unit
width is denoted by 6. Then the discrete pla-
cement of satellites is made by placing the
satellites at the integral multiple of unit seg-
ment. Owing to the segmentation, this problem

is converted into a discrete optimization pro-
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blem. Of course, this converted problem is an
approximate one of the original problem. How-
ever, this converted problem is still difficult to
solve,

This part will be devoted to finding a very
good solution via an efficient and robust opti-
mization algorithm-simulated annealing [5].
Simulated annealing is a general method for
the approximate solution of difficult combina-
torial optimization problems. In order to apply
simulated annealing to problem (C2), we have
to define the corresponding discrete solution
space, the profit function, and the neighbor-
hood structure.

e Solution space

Since we have n proposed satellites, the cur—
rent state of orbital positions is represented by
a n—dimensional vector x as below.

Xy

A component %; of vector x denotes the or-
bital position of satellite { where 1<{<#, and

0imm < x,'S eima)(.

¢ Profit function

The problem introduced here is aimed at
maximizing the margin of aggregate C/I. The-
refore the profit function is f(x)=min{f(x),
s, f{x), . £,(x)}, which is the objective func-
tion of problem (C2).

® Neighborhood structure
Here, given an x= (x;,%2,+,x,) 7, the neigh-

borhood N.(x) is defined as follows :

A7 1A% A9 Hx AR
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N®={xlx=(x,%5,, xf,"',}—,-,"'.x,,)T},

where i#j, 1<ij<n and /"< x;< 0™

( 0imin S}:S 6imax )

A strategy for picking a solution x in Ne()
is as follows: We choose two numbers i and j

such that
Argmin {f(x):j=1,, %}, Set x=x. Update *;

i= Argmax {f;(x):i=1,,n}, ;=

and x; as follows: #;:=0"+0x random
(m;), x;:=0/"+ 6= random (m;), where
is the greatest integer number less than or

6{max — aimin
equal to R , and random( ") is a
function which generates a random integer

number between 0 and ;.

3.3 Case 3

We handle this case like (Case 2). In this
case, however, n—p existing satellites have
their fixed orbital positions. Therefore, we do
not need to change the positions of these »-—
p satellites. For the convenience, the proposed
satellites are denoted by {1,-, p}, and the ex-
isting satellites are denoted by {p+1,--, n}.
Then, we have a n-dimensional vector x
where 67" < x;< 0 for ie {1,-,p}, and %;
is fixed for ie{p+1,-, nh

The profit function is the objective function
of problem (C3). The neighborhood is defined as
NJ(x) ={xlx = (%, %, %5, %, 2,) T},
where 1<i,7<p, and 0/" < x; < /™ (6™
< x;<0) A strategy for picking a sol~
ution x in N(x) is very similar to (Case 2).

But, if the chosen i is greater than p then find
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the currently nearest, from i, proposed satellite

i* and replace [ with ¢*. If the chosen j is
greater than p then do the same way as above.

If i is equal to j, update x only.

4. Implementation

First, we investigated the total carrier—to-
interference ratio. The total carrier-to-inter-
ference ratio in network i due to single-entry
interference from network j, (C/I) ; is shown
in {Figure 3]. The larger the orbital distance
between two satellites { and j, the bigger the
value of (C/I)}; And the speed of decreasing
of (C/I); is very fast when the distance is
small.

cm,

[Figure 31 An example of (C/I)

For the implementation, we used the new
function @ ; log(lx;— x;| 2+ 1) for (C/I)
which has the very same shape as the one in
[Figure 3). The relation coefficient @ 5 (0 <
@ ;<1) is to deal with the similarity between
two networks i and j. If two networks have a

lot of similarity, which means they make a lot

of interference to each other, we assign a

small value to @ ;. The @ ; also makes it pos-
sible to consider other interference-making fac—
tors which we can not deal with easily. We
assumed that all the networks have the same
required aggregate C/I ratio.

The entire scheme of simulated annealing is

summarized as follows (for details, see [5]).

Step 1 : Determine an initial 7.

Step 2 : Given an X, pick randomly a solution
% in NS%), and let 4 be the change
in profit value of x from that of x.

Step3 :If 4=0, then x:=x. Otherwise, let

4
x :=x with probability 7.

Step4 : If it is concluded that a sufficient num-
ber of trials have been made with the
current T (ie, in equilibrium), then go
to Step 5. Otherwise return to Step 2
with the current x.

Stepb : If the current T is concluded to be
sufficiently small (i.e., frozen), then go
to Step 6. Otherwise reduce the T (e.g.,

T :=»T with a constant # satisfying
0<»<1) and return to Step 2.

i Step6 : Halt after outputting the best solution

obtained so far as the computed ap-

proximate solution x.

In fact, it is necessary to enumerate all pos-
sible combinations to get the optimal solution.
However, it is impossible to get the optimal
solution because of the astronomical computa-
tion time. Let us compare the solution quality
of our methods in the case of the very small
example problems which are summarized in
<Table 1> and <Table 2>.
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{Table 1) Computational results for (Case 2)

ay our method optimal
Prob. i 1 2 3 6" F i X L2 x; Fix)
1 - 09 0.7 20 25 24.36 -1.6468 24.36 -1.6465
1-1 2 09 - 0.2 20 30 30.00 -2.1157 30.00 -2.1156
3 0.7 0.2 - 15 25 15.01 -2.1165 15.00 -2.1162
1 - 09 0.7 10 20 10.01 -0.7928 10.00 -0.7897
1-2 2 09 0.2 20 40 39.96 -1.6248 40.00 -1.6254
3 0.7 0.2 - 10 30 29.86 -1.9575 30.00 -1.9567
I - 05 0.3 50 60 50.00 -2.3843 50.00 -2.3854
1-3 2 05 - 0.1 55 60 55.03 -2.6165 55.00 -26172
3 0.3 0.1 - 53 58 57.99 -2.6947 58.00 -2.6940
{Table 2> Computational results for (Case 3)
Prob a; g g our method optimal
' ij 1 2 3 ' ' x; £{x) x; FAx)
1 - 09 0.7 20 25 24.30 -1.6477 24.36 -1.6465
2-1 2 09 0.2 20 30 29.95 -2.1153 30.00 -2.1156
3 0.7 0.2 15 15.00 -2.1182 15.00 -2.1162
1 0.9 0.7 10 20 10.00 -0.7909 10.00 -0.7897
2-2 2 0.9 - 0.2 20 40 39.90 -16275 40.00 -1.6254
3 0.7 0.2 - 30 30.00 -1.9577 30.00 ~1.9567
1 - 05 03 50 60 50.00 -2.3854 50.00 -2.3854
2-3 2 05 - 0.1 55 60 55.00 -26172 55.00 -2.6172
3 03 0.1 58 58.00 -2.6940 58.00 -2.6940

In order to apply simulated annealing, we
set the initial 7 to 1 and set » to 0.7. The
simple approach of permitting 5,000 state tran-
sitions at each 7T level has been used. When
T is less than 10 %, we conclude it is frozen.
The unit width, &, of a segment is set to 0.01.

<Table 1> shows the result for (Case 2).
The number of satellites is three. We have
solved three problems and for each of them
the initial solution is set to the mid-point be-
tween 6" and 6™*. In <Table 1>, we can
compare the optimal solutions with the ones
we have found. <Table 2> shows the differ-
ence between the optimal solutions and the
ones we have found for (Case 3). In this case,

the satellite 3 of each problem is fixed. The
optimal solutions can be obtained by enumer-
ating all possible combinations since the prob-
lems above are very small. From <Table 1>
and <Table 2>, we can say that our algo-
rithms provide very good performance.

In addition, our algorithms have a very low
computational burden. Our algorithm gives a
good solution after 5000(&*-+1) iterations, while
k' is the smallest integer number £ satisfying
Tr*¢107%. Since T=1 and »=0.7, therefore
k*=39 and we need 200,000 iterations to get
the final solution. However, the total number
of iterations to get an optimal solution is very
big. For instance, we can obtain the optimal so-
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lution to problem 1-1 by computing 500,000,000
iterations since the unit width of a segment is
0.01. <Table 3> compares the computational
burden of the problems in <Table 1> and <Ta-

ble 2>. For problem 2-1, 2-2, and 2-3, each
exhaustive search has a relatively low iter-
ations because the satellite 3 of each problem
is fixed.

(Table 3) Computational burden

Prob. our method(a) exhaustive search(b) difference(b/a)
1-1 200,000 iterations 500,000,000 iterations 2,500

1-2 200,000 iterations 4,000,000,000 iterations 20,000
1-3 200,000 iterations 250,000,000 iterations 1,250

2-1 200,000 iterations 500,000 iterations 25

2-2 200,000 iterations 2,000,000 iterations 10

2-3 200,000 iterations 500,000 iterations 25

5. Conclusions

Optimal methods to identify satellite orbi-
tal positions were suggested. We considered
three cases which are possible in real si-
tuation. The first case was worked out by
applying a search algorithm such as Fibo-
nacci method, and we found a near optimum
with ease. Then, we applied the methods
based on simulated annealing procedure to
the other cases. By using the methods we
obtained very good solutions.

The methods introduced in this paper can be
applied to decide the orbital positions in satel-
lite cluster systems, which is comprised of
tens of satellites interconnected each other.
Note that, since our simulated annealing pro-
cedure is not dependent on the type of ob-
jective function, any kind of objective function

can be used.
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