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APPROXIMATE REACHABLE SETS FOR RETARDED
SEMILINEAR CONTROL SYSTEMS'
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ABSTRACT. In this paper, we consider a control system for semilinear dif-
ferential equations in Hilbert spaces with Lipschitz continuous nonlinear
term. Our method is to find the equivalence of approximate controllability
for the given semilinear system and the linear system excluded the nonlin-
ear term, which is based on results on regularity for the mild solution and
estimates of the fundamental solution.

AMS Mathematics Subject Classification : 35B37, 93C20
Key words and phrases : reachable set, approximate controllability, semi-
linear control system, lipschtiz continuity, analytic semigroup.

1. Introduction

Let H and V be complex Hilbert spaces such that V is a dense subspace in
H. In this paper, we are concerned with the control results for the following
retarded semilinear control system in Hilbert space H:

z' (t) = Ax(t) + ff’h a(s)A1z(t + s)ds + G(t,z(t)) + Bu(t), t>0,

2(0) = ¢% a(s)=¢'(s) —h<s<O, (1.1)

where h > 0, B is a bounded linear controller, and w(t) is an appropriate control
functions. A is the operator associated with a bounded sesquilinear form defined
in V x V satisfying Garding inequality. Then A generates an analytic semigroup
S(t) in both H and V* and so the system (1.1) may be considered as an system
in both H and V*. The operator A; is bounded linear from V to V*. The
function a(-) is assumed to be real valued and Holder continuous in the interval
[—h,0], and G is given function satisfying some assumptions. Here, we discuss
whether by choosing an u we can steer each initial state to any neighbor hood of
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a given z € H at a given time 7. This is called an approximate controllability
problem, and for linear evolution systems in general Banach spaces, there are
many papers and monographs, see [1, 2|, Triggiani [3], Curtain and Zwart [4] and
references therein. This kind of equations arise naturally in biology, in physics,
control engineering problem, etc.

The controllability for nonlinear control systems has been studied by many
authors, for example, Control of nonlinear infinite dimensional systems in [5],
controllability for parabolic equations with uniformly bounded nonlinear terms
in [6], local controllability of neutral functional differential systems in [7], impul-
sive functional differential inclusions in [8]. Recently, the approximate control-
lability for semilinear control systems can be founded in [9, 10, 11], their results
give sufficient condition on strict assumptions on the control action operator B.

In this paper we investigate the equivalence of approximate controllability for
(1.1) and the linear system excluded the nonlinear term in the time T satisfying
T > 2h, because that the solution mapping from the initial space to the solution
space is Hélder continuous in (2h, o), see [12]. We no longer require the strict
range condition on B, and the uniform boundedness in [6] but instead we need
the regularity and a variation of solutions of the given equations. Based on
L2-regularity properties in Section 2, we will obtain the relations between the
reachable set of the semilinear system and that of its corresponding linear system
in Section 3.

2. Regularity for retarded semilinear equations

If H is identified with its dual space we may write V' C H C V* densely and
the corresponding injections are continuous. The norms on V', H and V* will be

denoted by || - ||, | - | and || - ||+, respectively. We assume that V has a stronger
topology than H and, for brevity, we may regard that
ulls < ful < |[ull, VueV. (2.1)

Let a(-,-) be a bounded sesquilinear form defined in V' x V and satisfying
Garding’s inequality
Re a(u,u) > wi||ul]* — walul?, (2.2)
where w; > 0 and ws is a real number. Let A be the operator associated with
this sesquilinear form:
(Au,v) = —a(u,v), u, veV. (2.3)
Then A is a bounded linear operator from V' to V* by the Lax-Milgram Theorem.

It is well known that A generates an analytic semigroup in both of H and V*(see
[14]). Hence, we assume that there exists a constant Cy > 0 such that

1/2
llul| < Collul 52y lul*2, (2.4)

where
ull peay = (|Aul® + [u]?)!/?
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is the graph norm of D(A). Thus we have the following sequence
D(A)cV CHCV*C DA, (2.5)
where each space is dense in the next one which continuous injection.
Lemma 2.1. With the notations (2.1), (2.4), and (2.5), we have
(ViV)ij22=H, (D(A),H)ip22="V,

where (V,V*)1 /2,9 denotes the real interpolation space between V and V* (Section
1.3.3 of [15]).

The operator A; is a bounded linear operator from V to V* such that its
restrictions to D(A) are bounded linear operators from D(A) equipped with the
graph norm of A to H, for example, A; is an elliptic differential operator of
second order induced by sesquilinear form.

We need to impose the following two conditions:

Assumption (A). The function a(-) is assumed to be real valued and Holder
continuous of order p in the interval [—h, 0]:

la(s)| < Ho, |a(s) —a(7)| < Ho(s = 7)°, —h<7,5<0

for a constant Hy.

Assumption (G). Let £ and B be the Lebesgue o-field on [0,00) and the
Borel o-field on [—h, 0] respectively. Let o be a Borel measure on [—h,0] and
g :[0,00) x[=h,0] xV xV — H be a nonlinear mapping satisfying the following:
(i) For any z,y € V the mapping g(-,-, z,y) is strongly £ x B-measurable;

(ii) There exist positive constants Lo, L1, Lo such that

‘g(t7 S, 07 0)| S KO;

l9(t, 5,2, 9) — g(t,5,2,9)] < K|z — 2[| + Kslly — 9] (2.6)
for all (t,s) € [0,00) x [—h,0] and z,%,y,§ € V.

For x € L*(—=h,T;V), T > 0 we set
0
G(t,z) = / g(t, s, z(t), z(t + s))u(ds).
—h
Here as in [16] we consider the Borel measurable corrections of x(-).

Remark 2.1. The above operator g satisfying (2.6) is the semilinear case of the
nonlinear part of quasilinear equations considered by J. Yong and L. Pan [16].

First, we consider the following linear retarded functional differential equation
with forcing term k:

{ 2 (t) = Az(t) + [°, a(s) Azt + s)ds + k(t), >0,

2(0) = ¢°, z(s)=o'(s) —h<s<0. (2.7)
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Let W(-) be the fundamental solution of the linear equation (2.7) in the sense
of Nakaglri [17], which is the operator valued function satisfying

W(t) =S+ [y St—s){[°, a(r) AW (s +7)dr}ds, t>0,
W) =1, W(s) =0, —h§s<0,

where S(-) is the semigroup generated by A. For each ¢ > 0, we introduce the
operator valued function Uy(-) defined by

(2.8)

s) = / W(t—s+o0)a(o)Ardo : V =V, se[—h,0].
Then, by using (2.8), (1.1) is represented

x(t) ()¢ + / Ui(s)p* (s)ds + /0 W(t — s){G(s,x(s)) + k(s)}ds.

From Proposition 4.1 of [12] or Theorem 1 of [13], it follows the following
results.

Lemma 2.2. Under Assumption (4), the fundamental solution W (t) to (2.7)
exists uniquely and is bounded. Applying Proposition 4.1 of [12] to the equation
(2.7) in the space V*, there exists a constant Co > 0 such that

W)l eve) < Co, [IW(E) = W)y < Colt —1), (2.9)
W) = WH) v vy < Colt — )%t —h)™", (2.10)
forh<t<t/, and Kk < p.

Let T > 0 be arbitrary fixed. Associated with U(-), we consider the operator
U: L*(=h,0;V) — L*(0,T; V) defined by

/ Uy(s s, te(0,7T) (2.11)
for ¢! € L?(—h,0; V). We can see that U is into and bounded for each T' > 0(see
[17]).

Lemma 2.3. Under Assumption (A) and k < p, the operator U defined by
(2.11) is Hélder continuous of order (k + 1)/2 in (2h,00) in operator norm of
L(H,V), i.e., for any T > 2h there exists a constant Cp such that

(U () — US") ()] < Cplt —t|=HD/2, (2.12)

Proof. Using (V,V*)1/22 = H and the well known interpolation inequality we
get from (2.9) and (2.10)

W () = W) ||y < Colt —t)IFR/2( —p)=s/2. (2.13)
Hence, with aid of (2.13) we have
(UeM)(t) = (US")(B)]
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Ky—1 / K —K
< CoHo(1 - 5) \/E”AHL(V*,V)(t — )" TD2 (¢t — p)! /2||¢1||L2(—h,0;v)~

Noting that ¢t — s + o > h since t > 2h, we get (2.12). O

Now, consider the following semilinear control system with a forcing term k:

x' () = Az(t) + f_oh a(s)Arz(t + s)ds + G(t,xz(t)) + k(t), t>0, (2.14)
2(0) =¢°, 2(s) =¢'(s) —h<s<0. '

By virtue of Theorem 3.1 of [11] we have the following result on the semilinear
equation (2.7).

Proposition 2.4. 1) Let (¢°,¢') € H x L*(=h,0;V) and k € L*(0,T;V*),
T > 0. Then there exists a unique solution x of (2.14) belonging to

L*(—h,T; V)N W2(0,T; V*) c C([0,T); H)
and satisfying
||| |L2(7h,T;V)mW1,2(O,T;V*)
< C1(10°) + 16" |22 (=n.osvy + 1Kl L2 0,1 +)), (2.15)

where C1 is a constant depending on T.

2) If (¢°,¢') € H x L?>(—h,0; V) and k € L*(0,T;V*), then the mapping
HxL*(=h,0;V)xL*(0,T;V*) 3 (¢°, ¢' k) = x € L*(—h, T; V)NWH2(0,T; V*)
is Lipschitz continuous.

Here, we note that by using interpolation theory, we have that for z €
L2(0,T; V)N WH2(0,T;V*), there exists a constant Cy > 0 such that

12l|c o) < Coll2llL2(0,7:v)nw2(0,75v+) - (2.16)
3. Approximately reachable sets

Let U be a Banach space and the controller operator B be bounded lin-
ear operator from another Banach space L?(0,T;U) to H. The solution z(t) =
x(t; ¢, G, u) of initial value problem (1,1) corresponding to a control u € L?(0,T;U)
is the following form:

z(t; 0,G, )

0 t
=W (t)e® + /_h Us(s)o'(s)ds + /0 W(t — $){G(s,z(s)) + (Bu)(s)}ds.

For T > 0, ¢ = (¢°,¢') € H x L*(=h,0;V) and u € L?(0,T;U) we define
reachable sets as follows.

Lr(¢) = {z(T;¢,0,u) : u € L*(0,T;U)},
Rr(¢) = {2(T;¢,G,u) :u € L*(0,T;U)}.
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Definition 3.1. (1) System (1.1) is said to be H-approximately controllable for
initial value ¢ in time T) if Ry (¢) = H.

(2) The linear system corresponding (1.1) is said to be H-approximately con-
trollable for initial value ¢ in time T if Lp(¢) = H.

Remark 3.1. Since A generate an analytic semigroup, the following (1)-(2) are
equivalent for the linear system (see [2, Theorem 3.10]).

(1) Lr(¢)=H
2) Lr(0) = H.

Lemma 3.2. Let x € L?*(—h,T;V), T > 0. Then G(-,x) € L*(0,T; H). and
GG )l 2o,y < il[=hy OD{KoVT + (K1 + K2)|||| 12 (0,77v)
+ Ko|[z||p2(—n,00v) }- (3.1)
Moreover if x1, xo € L*>(—h,T;V), then
IG(,21) = G(, @)l 20,750y < pu([=h, OD{ (KL + K2)[#1 — @2[ 120,73
+ Kallz1 — 2|12 (—h,0;v) }- (3.2)

The proof is immediately from Assumption (G).

Theorem 3.3. For any T > 0 we have

Rt (0) C Lr (O) .

Proof. Let zg ¢ Lr(0). Since Lp(0) is a balanced closed convex subspace, we
have azg ¢ Lp(0) for every o € R, and

inf{|zg — 2| : z € Ly(0)} = d.
By the formula (2.17) we have
(0, G, w)l|L20,15v) < CullBll[ullz2 0,750y, (3.3)

where C is the constant in Proposition 2.1. For every u € L?(0,T;U), we choose
a constant a > 0 such that

VT Cop([~h, 0){KoVT + (K1 + K2)C1||Bl||ul| 20,7501} < d.
Hence form (3.1), (3.3) and by using Holder inequality, it follows that

T
|x(T;0,G,u) — az| > | / W(T — s)Bu(s)ds — azg|
0

T
- |/0 W(T — s)G(s,z(s))ds|

> ad — VT Cop([—h, 0)){KoV'T
+ (K1 + K2)C1||Bl|[|ul| 20,750 }
> 0.

Thus, we have azy ¢ Rr(0). O
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We assume the following conditions:
Assumption (B) For 0 < 7 <t < T and u € L*(0,T;U), the B(r,t) from
L2(0,T;U) into H defined by

B(r,t)k = /t W (t — s)Bu(s)ds

induces an invertible operator B defined on L?(0, T;U)/KerB and there exists a
positive constant Lp such that ||[B~1|| < Lp, see [18].

Theorem 3.4. Under Assumptions (A), (B), (G), and T > 2h, we have

Lr(¢) C Rr(¢), ¢ € H x L*(0,T;V).

Proof. Let T > 2h, and let v > 0 be arbitrary given. We will show that z €
Lr(¢) satisfying |2| < v belongs to Rr(¢). Let u € L?(0,T;U) be arbitrary
fixed. Then by (2.15) we have

|zull20,mv) < Cr(19°] + 10|22 (—n.0vy + 1Bl |ull 20, 70)

where z,, is the solution (2.17) corresponding to the control w. For any e > 0,
we can choose a constant § > 0 satisfying

max{J, Vé}
<min {(Co(C1Ca + Cp)[4°[)] 1, (3.4)

—1

(ColldllLiz2 (=o)L D |22 (—noy)
1
(CoCrl|o L2 (—n0v))

((Co + 1)CoVTp([=h, 0)) (Ko VT + (K1 + K)[[wul| L2 (0.1:v)
+ Kolot| L2 —n009))

EC,Q —1 1
(Mo + %)™, ((Co+ VCoVTIIBIlIlul 20 r:) " Ye/3,
where
Mo =Con([=h, 0D [KoVT + Kalld lz2(-now) (35)

+ C1 (K1 + K2){|¢0‘ + ||¢1||L2(—h,0;\/)) +[|ull 20,7507
+ Lp(CoCollzullL2(0,m5v) +7) }

M, :CoClLBu([—h,O])(Kl + KQ), (36)
where ¢, Cy and Cy are the constants of (2.11), (2.15) and (2.16), respectively.
Set

0
o= (T = 550,G,0) = W(T = 8)6° + [ Ur_s(5)0(s)ds
—h
T-46 T—6

+ W(T — 6§ — s)G(s,xy(s))ds + W(T — 6§ — s)Bu(s)ds,
0 0
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where z,(t) = x(¢; ¢, G, u) for 0 <t < T. Consider the following problem:

{ y'(t) = Ay(t) + [°, a(s)Avy(t + s)ds + Bu(t), §<t<T,

The solution of (3.7) with respect to the control w € L*(T — 6, T;U) is denoted
by

T
Yu(T) = W (61 + o W(T — s)Bw(s)ds (3.8)
0
=W(OW(T — 6)¢° + W(0) [h Ur_s(s)¢o*(s)ds
-5
+ W(9) ! W(T —§ — s)G(s,x4(s))ds
OTﬂS T
+ W (9) W(T — § — s)Bu(s)ds + W(T — s)Bw(s)ds,
0 T-5

Then since z € Lr(¢), and Ly(¢) = L(0) is independent of the time T and
initial data ¢(see Remark 2.1), there exists wy € L?(T — §,T;U) such that

€
o (T) 2| < & (39
and so, by (2.18), (3.8) and (3.9) we have
T
| W(T — s)Bwi(s)ds| < |yw, (T) = z[ + + [W(0)z1]
T-§
€
< CoCallwyllL20,m5v) + v + 3
Hence, from Assumption (B) it follows that
€
lwillzz,r0) < Le{CoChllwullz20mm) +7 + g} (3.10)

Now we set
U if 0<s<T -4,
v(s) = .
wi(s) i T—-0<s<T.

Then v € L?(0,T;U). Observing that
:L.’U (t;¢)7 G? ,U)

— W6 + / U)ot () + /0 Wt — 1){G(r, 20(7)) + Bo(r)}dr,

from (3.8) and (3.9) we obtain that
|2(T3¢, G, v) = 2| < Jyu, (T) = 2|+ [W(T)¢" = W(@)W(T = 8)¢"|  (3.11)
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0
] / U () (s)ds — W (5) /_ Urs()0' (5]
T—6
+ | / W(T — s)G(s,x,(s))ds — W(9) W(T — 6 — 5)G(s,zu(s))ds|
0 0
T—6 T—6
+ | W(T — s)Bu(s)ds — W () W(T — 6 — s)Bu(s)ds|
0

5 T+ 1T+ IIT+1V.

co

From (2.17) and (2.18) it follows that

OiltlgT (W (t)¢°] < C2||W(')¢O||L2(0,T;V)0W1=2(O,T;V*) < 0105)¢°,

and so
1= |W(T)¢’ = W(EW(T - 6)¢”|
< | = WO W(T)e|
+ W ()| [|W(T) = W(T = 8)|| .| ¢ (3.12)
< 3C(C1Ca + Cy)|8°) < §

With aid of Lemmas 2.2 and 2.3, and (3.4) we have

m<|i- W((S))/ Ur ()6 (s)ds|

0
FIWE) [ Ur(s) = Ur_sls))o s)ds] (3.13)
—h
K €
< 8Co|IU| Liz2 (o |0 L2 (—hosvy + CoCr T2 |91 | L2 p o0y < 1
y (2.17) and (3.10), we get
2w, |22 (r—5,7;v) <I|TollL2(0,75v) (3.14)
<Ci{l¢°| + H¢1||L2(—h,o;\/)) + [ull 20,70
€
+ Lp(CoCllzullz20,mv) + 7 + g) ).
Hence, with aid of (3.1) and by using Hélder inequality, we have
T
| W(T — $)G(8, 2, (5))ds| < CoV8||G(, 2w, L2(0.1:01) (3.15)
T-6

< CoVou([—h, 0){KoVT + (K + Ko)||zw, || 2(r—s,7v) + K| 22(—n00)

< \[(Mo + %)
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where My and M; are the constants of (3.5) and (3.6), respectively. Thus, from
(2.11), (2.12), (3.1), (3.4), and (3.15) it follows that

T—6 T
HI=[WE) [ WT — 6 5)C(s,zu(s))ds — / W(T — $)G(s, 2. (s))ds|
0 0
T—-6
<|(W(6) - 1) ) W(T — 6 — 5)G(s,zu(s))ds| (3.16)

T-5
+ | /0 (W(T —6—s) = W(T — 5))G(s,34(s))ds|

] WAT = )G, (9)ds|

<(Co + 1)CodVTu([=h, {KoVT + (K1 + Ka)||zul|r2(0,mv) + Kol |6']]}

VE(Mo + Dy o

3 +

)

NG

88
and
T—6 T—6
IV =|W(6) W(T — 6 — s)Bu(s)ds — W(T — s)Bu(s)ds|
0 0
T—0
<|(W(6) - 1) ; W(T — 6 — s)Bu(s)ds|

T-§
+ |/ (W(T — 6 — s) — W(T — s)) Bu(s)ds| (3.17)
0
€
<(Co + D)CodVT || Bl[[[ull 20,70 < 5-
Therefore, by (3.4), and (3.11)-(3.17), we have
||£C(T,¢,G,’U) - ZH <€,

that is, z € Rr(¢) and the proof is complete. O

Remark 3.2. Noting that H([0,T];U) is dense in L?(0,7;U), we can obtain
the same results of Theorem 3.4 corresponding to (1.1) with control space

H([0,T);U) = {w: [0,T] = U : |w(t) — w(s)| < Holt —s|’, 0< 6 <1, Hy >0}
instead of L2(0,T;U)
From Theorems 3.3-4, we obtain the following control results of (1.1).

Corollary 3.5. Under Assumptions (A) and (F), for T > 2h we have

Lr(@) = H <= Fr(9) = H.

Therefore, the approximate controllability of linear system (1.1) with G = 0 is
equivalent to the condition for the approximate controllability of the nonlinear
system (1.1).
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Example 3.6. Example. Let
H = L*(0,7), V=Hj0,7), V*=H ' (0,7),

[T du(z) dv(x)
CL(U, U) = /0 W?dl‘

and
_ d*(g)

We consider the following control system for a retarded diffusion and reaction
process dealt with by [6].
Lo(t,€) = An(t,) + [2) a1(s)An(t + 5, E)ds + G(a(t,€)) + B(E)u(t),
(t,€) €0,T] x [0,7],

with  D(A) = {y € H*(0,7) : y(0) = y(n) = 0}.

x(t,0)  =a, wx(t,m)=p, t>0,
z(0,§) =0, 0<g<m,

(3.18)

where h > 0, ¢'(-,€) € L*(0,T;V), B(-) € L*(0,7), and u € L?(0,T;R) is a
control function. The nonlinear term G is given by

() ox

=2 seR.
1+ |z

Setting
() =—(1-&a—-¢B (0<E <),

and

¢1(t,§), —h§t<0.
System (3.18) is equivalent to
G218 = A6, + [0 ar(s)Ae(t + 5, E)ds + G(2(1,€)) + B©)ul(t),
(t,€) € [0,T] x [0, 7],
z(t,0) =z(t,m)=0, t>0,
20,6) =4, 0<g<m,
Z(S,f) :¢1(87€>7 —h <5 <0,

2(t,6) = {x(tf) —0%(), t>0,

(3.19)

oy - 0°(0))
WO = T @ oEn

For x,y € L?(0, ), we have

|G (z(&)] < o],

y() € L*(0,m).
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_ o101+ 21y(©) = %) - 1) = 9@ _ o 1
G ~ CWEN < [ e = DT ate = 0] < 211 —v(©)

for almost all £ € (0,7). Therefore, we see that G satisfies Assumption (G).
Thus by Theorem 3,3, provided the time T" > 2h, we get that the approximate
controllability of linear system (3.18) with g = 0 is equivalent to the condition
for the approximate controllability of the nonlinear system (3.19).
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