• Title/Summary/Keyword: metallic wire

Search Result 69, Processing Time 0.028 seconds

Effects of Fluorides in the Flux Cored Wire on the Oxygen Content of Weld Metal (플럭스 코어드 와이어의 불화물 종류에 따른 용접금속 산소량의 변화)

  • Cha, Joo-hyeon;Bang, Kook-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.615-619
    • /
    • 2019
  • Various fluorides, i.e., CaF2, Na3AlF6, K2SiF6, MnF3, MgF2, were added to the flux cored wire, and their effects on the oxygen content of the weld metal were investigated. The investigation showed that the oxygen content of weld metal was not influenced by the type of metallic elements in the fluoride; rather, it was influenced by the stability of the arc during welding. While the wire containing MgF2 showed the most stable arc and the least amount of oxygen in the weld metal, the wire containing MnF3 showed the least stable arc and the greatest amount of oxygen. Since the deoxidation of the weld metal was not affected by the deoxidation elements, such as Ca and Mg, it was possible to predict the oxygen content of the weld metal by the equilibrium Si-Mn deoxidation thermodynamic model.

A Study on the Electrical Characteristics of Different Wire Materials

  • Jeong, Chi-Hyeon;Ahn, Billy;Ray, Coronado;Kai, Liu;Hlaing, Ma Phoo Pwint;Park, Susan;Kim, Gwang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • Gold wire has long been used as a proven method of connecting a silicon die to a substrate in wide variety of package types, delivering high yield and productivity. However, with the high price of gold, the semiconductor packaging industry has been implementing an alternate wire material. These materials may include silver (Ag) or copper (Cu) alloys as an alternative to save material cost and maintain electrical performance. This paper will analyze and compare the electrical characteristics of several wire types. For the study, typical 0.6 mil, 0.8 mil and 1.0 mil diameter wires were selected from various alloy types (2N gold, Palladium (Pd) coated/doped copper, 88% and 96% silver) as well as respective pure metallic wires for comparison. Each wire model was validated by comparing it to electromagnetic simulation results and measurement data. Measurements from the implemented test boards were done using a vector network analyzer (VNA) and probe station setup. The test board layout consisted of three parts: 1. Analysis of the diameter, length and material characteristic of each wire; 2. Comparison between a microstrip line and the wire to microstrip line transition; and 3. Analysis of the wire's cross-talk. These areas will be discussed in detail along with all the extracted results from each type the wire.

Synthesis of Ni Nanopowder by Wire Explosion in Liquid Media (액중 전기폭발법을 이용한 니켈 나노분말 제조)

  • Cho, Chu-Hyun;Kang, Chung-Il;Ha, Yoon-Cheol;Jin, Yun-Sik;Lee, Kyung-Ja;Rhee, Chang-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.736-740
    • /
    • 2010
  • Nickel wires of 0.8 mm in diameter and 80 mm in length were electrically exploded in liquid media such as water, ethyl alcohol. The distribution of particle sizes was broad from a few micrometers to tens of nanometer. It was identified that the particles could be classified according to its sizes by using centrifugal separator. The powder prepared in distilled water showed mainly pure metallic Ni phase although a little oxide phase was observed. The powders prepared in ethyl alcohol showed complicated unknown phases, which is attributed to the compound of carbon in the organic liquid. This unknown phase was turned to pure metallic Ni phase after heat treatment.

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Analysis of Failure Mechanism for Wire-woven Bulk Kaogme (Wire-woven Bulk Kagome 의 파손 메커니즘 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

Electromagnetic Wave Absorbers with Metamaterial Structure for RCS Reduction (레이다 단면적 저감을 위한 메타물질 구조의 전자파 흡수체)

  • Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In this invited paper, the authors give an overview of the new design technology for a metallic backplane-less metamaterial(MM) absorber and discuss a selection of examples. In contrast to a common MM absorber structure, the metallic pattern layer of the presented structure is placed facing toward the incident wave propagation direction to reduce the radar cross section(RCS) due to the metallic pattern itself at frequencies other than the targeted absorption frequency bands. The ability of the MM backplane-less absorber to exhibit broadband absorption performance and irregular surface applications will be discussed.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

Comparison Analysis of Field Test Methods Based on Technical Criteria of Electrolytic Corrosion Protection in Urban Railway (도시철도 전식방지 기술기준에 따른 시험방법 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1885-1891
    • /
    • 2010
  • Recently metropolitan local governments is actively introducing urban railway's expand and light rail transit as a means of new transport system. DC electricity feeder system operating in the domestic urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is to be defined as a current flowing on a structure that is not part of the intended electrical circuit with respect to a given structure. Stray current is generally results from the leakage of return currents from large DC traction systems that are grounded or have a bad earth-insulated return path. At the place where the current leaves the rail and metallic structures, electrolytic corrosion may take place. This paper presents comparison analysis of field test methods based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems.

  • PDF

The Comparison Analysis of Field Test Cases on Technical Specifications of Electrolytic Corrosion in Urban Railway (국내 도시철도 전식방지 기술기준에 따른 시험사례 비교분석)

  • Kim, Jae-Moon;Jung, Ho-Sung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.305-310
    • /
    • 2010
  • DC electricity feeder system operating in the urban railway is typically a feedback circuit consisted of the contact wire and electric railway vehicle via rail. But stray current is flowed on a structure that is not part of the intended electrical circuit with respect to a given structure. This paper presents comparison analysis of field test cases based on criteria of electrolytic corrosion protection of buried metallic structures adjacent to DC traction systems. As a result of it, we confirmed that measurement methods are different from each other about the same tests. Therefore measurement methods to prevent electrolytic corrosion need to establish electrical facilities standards to be applied domestic.

Error Performance in DSL System for ISDN Basic Rate Access (ISDN 기본접속을 위한 DSL 시스템의 성능 평가)

  • 김득환;곽경섭;김진태;최병하
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.29-39
    • /
    • 1993
  • For an economical or timely reason, the types of subscriber loops for ISDN basic rate access service will, at least initially, be that of the pre-existing telephone network, that is, 2-wire twisted-pair metallic cable. Therefore, it is important to assess the high-speed digital transmission capability of the 2-wire subscriber loops. In this paper, the impairments such as intersymbol interference, crosstalk, and impulse niose are modeled. And then, symbol error probabilities in terms of SNR in DSL system using ECH and 2B1Q line code are analytically derived and numerically calculated. Also, the relationship between the quality of service required in ISDN subscriber section and the loop parameters is investigated.

  • PDF