DOI QR코드

DOI QR Code

Electromagnetic Wave Absorbers with Metamaterial Structure for RCS Reduction

레이다 단면적 저감을 위한 메타물질 구조의 전자파 흡수체

  • Lee, Hong-Min (Department of Electronic Engineering, Kyonggi University)
  • 이홍민 (경기대학교 전자공학과)
  • Received : 2014.11.13
  • Accepted : 2014.12.15
  • Published : 2015.01.30

Abstract

In this invited paper, the authors give an overview of the new design technology for a metallic backplane-less metamaterial(MM) absorber and discuss a selection of examples. In contrast to a common MM absorber structure, the metallic pattern layer of the presented structure is placed facing toward the incident wave propagation direction to reduce the radar cross section(RCS) due to the metallic pattern itself at frequencies other than the targeted absorption frequency bands. The ability of the MM backplane-less absorber to exhibit broadband absorption performance and irregular surface applications will be discussed.

본 초청 논문에서 저자는 금속의 접지 판이 없는 메타물질 흡수체에 대한 새로운 설계 기법을 제시하고, 몇 가지 설계 예를 검토하였다. 일반적인 메타물질 흡수체 구조와는 대조적으로 설계 목표로 설정된 흡수 주파수 대역 이외의 주파수에서도 메타물질 흡수체를 구성하는 금속 패턴 자체에서 전파 반사에 의한 레이다 단면적(RCS) 값을 감소시키기 위하여 흡수체 구조의 금속 패턴 층은 입사 전자파의 진행 방향과 평행하게 놓였다. 광대역 흡수특성을 나타내며, 곡면 구조에도 응용이 가능한 금속의 접지 판이 없는 메타물질 흡수체의 역량도 검토될 것이다.

Keywords

References

  1. M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angule perfect absorber/thermal emitter in terahertz regime", Phys. Rev. B., vol. 79, no. 3, pp. 033101, 2009. https://doi.org/10.1103/PhysRevB.79.033101
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giassen, "Infrared perfect absorber and its application as plasmonic sensor", Nano Lett., vol. 10, no. 7, pp. 2342-2348, 2010. https://doi.org/10.1021/nl9041033
  3. H. Zhu, F. Yi, and E. Cubukcu, "Nanoantenna absorbers for thermal detectors", IEEE Trans. on Photonics Tech., Lett., vol. 24, no. 14, pp. 1194-1196, 2012. https://doi.org/10.1109/LPT.2012.2199745
  4. N. Landy, C. Bingham, D. Smith, and W. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging", Phys. Rev. B., vol. 79, no. 12, pp. 1251041-1251046, 2009.
  5. R. L. Fnate, M. T. McCormack, "Reflection properties of the salisbury screen", IEEE Trans. Antennas Propag., vol. 36, no. 10, pp. 1443-1454, 1988. https://doi.org/10.1109/8.8632
  6. H. Mosallaei, K. Sarabandi, "A one-layer ultra-thin meta- surface absorber", IEEE Trans. Antennas Propag. Soc. Int. Symp., vol. 1B, pp. 615-618, 2005.
  7. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber", J. Appl. Phys. D, vol. 43, pp. 225102-225106, 2010. https://doi.org/10.1088/0022-3727/43/22/225102
  8. M. Li, H. -L. Yang, X. -W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands", Progress in Electromagnetics Research, vol. 108, pp. 37-49, 2010. https://doi.org/10.2528/PIER10071409
  9. J. Lee, S. Lim, "Bandwidth-enhanced and polarizationinsensitive metamaterial absorber using double resonance", Electron. Lett., vol. 47, pp. 8-9, 2011. https://doi.org/10.1049/el.2010.2770
  10. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator", J. Appl. Phys. A, vol. 102, pp. 99-103, 2010.
  11. X. -J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dualband terahertz metamaterial absorber with polarization insensitivity and wide incident angle", Progress in Electromagnetics Research, vol. 115, pp. 381-397, 2011. https://doi.org/10.2528/PIER11022307
  12. Y. Cheng, H. Yang, "Design, simulation, and measurement of metamaterial absorber", Microwave Opt. Tech. Lett., vol. 52, pp. 877-880, 2010. https://doi.org/10.1002/mop.25068
  13. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber", J. of Phys. D: Appl. Phys., vol. 43, pp. 225102-225106, 2010. https://doi.org/10.1088/0022-3727/43/22/225102
  14. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber", Optic Express, vol. 19, pp. 9401-9407, 2011. https://doi.org/10.1364/OE.19.009401
  15. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers", J. Appl. Phys., vol. 110, pp. 0149091-0149098, 2011.
  16. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle", Progress in Electromagnetics Research, vol. 101, pp. 231-239, 2010. https://doi.org/10.2528/PIER10011110
  17. F. Bilotti, A. Toscano, K. B. Alici, E. Ozbay, and L. Vegini, "Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions", IEEE Trans. on Electromagnetic Compatibility, vol. 53, pp. 63-72, 2011. https://doi.org/10.1109/TEMC.2010.2051229
  18. H. -M. Lee, T. Jo, "Design of miniaturized metamaterial absorber for 2 GHz frequency band", Asia Pacific EMC Int'l Syp., pp. 1-4, May 2011.
  19. H. -M. Lee, T. Jo, "Miniaturized narrowband microwave absorber based on double-negative metamaterial", Int'l Congress on Advanced Electromag. Materials in Microw. & Opt., pp. 1537-539, Oct. 2011.
  20. H. -M. Lee, H. S. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures", Progress in Electromagnetics Research, vol. 33, pp. 1-12, 2012.
  21. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-fieldcoupled resonators for negative permittivity metamaterials", Appl. Phys. Lett., vol. 88, pp. 0411091-0411093, 2006.
  22. 이홍민, "유연성 기판을 사용한 광대역 메타 흡수체", 한국전자파학회논문지, 25(3), pp. 339-347, 2014년 3월. https://doi.org/10.5515/KJKIEES.2014.25.3.339
  23. H. S. Lee, J. W. Park, and H. M. Lee, "Design of double negative metamaterial absorbercells using electromagnetic- field coupled resonators", Asia Pacific Microw. Conf., pp. 1062-1065, Nov. 2011.
  24. H. -M. Lee, H. -S. Lee, "A metamaterial based microwave absorber composed of coplaner electric-field-coupled resonator and wire array", Progress in Electromagnetics Research C, vol. 34, pp. 111-121, 2013. https://doi.org/10.2528/PIERC12091804
  25. H. -M. Lee, H. -S. Lee, "A method for extending the bandwidth of metamaterial absorber", Int'l Jour. of Ant. and Propag., vol. 34, pp. 1-7, 2012.
  26. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra broadband microwave metamaterial absorber", Appl. Phys. Lett., vol. 100, pp. 103506, 2012. https://doi.org/10.1063/1.3692178
  27. Y. Z. Cheng, Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped element", Appl. Phys., vol. 111, pp. 04490211-04490214, 2012.
  28. H. -M. Lee, H. -S. Lee, "Resonant mode behavior od lumped-resistor-loaded electric-inductive-capacitive resonator and its absorber application", AIP Advances, vol. 3, pp. 0521171-0521177, 2013.
  29. H. -M. Lee, H. -S. Lee, "Switchable resonant mode behavior of an electric-inductive-capacitive resonator", IEEE Int'l Syp. Antennas and Propagation, pp. 1362-1363, Jun. 2013.
  30. K. Iwaszczuk, A. C. Strikerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, "Flexibe metamaterial absorbers for stealth applications at terahertz frequencies", Optics Express, vol. 20, pp. 635-643, 2012. https://doi.org/10.1364/OE.20.000635
  31. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide subtrates", J. Appl. Phys. D, vol. 41, pp. 232004-232008, 2008. https://doi.org/10.1088/0022-3727/41/23/232004
  32. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design", Opt. Letters, vol. 31, no. 24, pp. 3620-3622, 2006. https://doi.org/10.1364/OL.31.003620