• Title/Summary/Keyword: metal oxide semiconductor

Search Result 710, Processing Time 0.03 seconds

Improvement of source-drain contact properties of organic thin-film transistors by metal oxide and molybdenum double layer

  • Kim, Keon-Soo;Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The contact resistance between organic semiconductor and source-drain electrode in Bottom Contact Organic Thin-Film Transistors (BCOTFTs) can be effectively reduced by metal oxide/molybdenum double layer structure; metal oxide layers including nickel oxide (NiOx/Mo) and moly oxide(MoOx) under molybdenum work as a high performance carrier injection layer. Step profiles of source-drain electrode can be easily achieved by simultaneous etching of the double layers using the difference etching rate between metal oxides and metal layers.

  • PDF

Macro Modeling and Parameter Extraction of Lateral Double Diffused Metal Oxide Semiconductor Transistor

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2011
  • High voltage (HV) integrated circuits are viable alternatives to discrete circuits in a wide variety of applications. A HV device generally used in these circuits is a lateral double diffused metal oxide semiconductor (LDMOS) transistor. Attempts to model LDMOS devices are complicated by the existence of the lightly doped drain and by the extension of the poly-silicon and the gate oxide. Several physically based investigations of the bias-dependent drift resistance of HV devices have been conducted, but a complete physical model has not been reported. We propose a new technique to model HV devices using both the BSIM3 SPICE model and a bias dependent resistor model (sub-circuit macro model).

Design of a Smart Gas Sensor System for Room Air-Cleaner of Automobile (Thick-Film Metal Oxide Semiconductor Gas Sensor)

  • Kim, Jung-Yoon;Shin, Tae-Zi;Yang, Myung-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • It is almost impossible to secure the reproductibility and stability of a commercial Thick-Film Metal Oxide Semiconductor Gas Sensor since it is very difficult to keep the consistency of the manufacturing environment. Thus it is widely known that the general Semiconductor-Oxide Gas Sensors are not appropriate for precise measurement systems. In this paper, the output characteristic analyzer of the various Thick-Film Metal Oxide Semiconductor Gas Sensors that are used to recognize the air quality within an automobile are proposed and examined. The analyzed output characters in a normal air chamber are grouped by sensor ranks and used to fill out the characteristic table of the Thick-Film Metal Oxide Semiconductor Gas Sensors. The characteristic table is used to determine the rank of the sensor that is equipped in the current air cleaner system of an automobile. The proposed air control system can also adapt the on-demand operation that recognizes the history of the passenger's manual-control.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

Metal-Oxide-Semiconductor Photoelectric Devices (Metal-Oxide-Semiconductor 광전소자)

  • Kang, Kilmo;Yun, Ju-Hyung;Park, Yun Chang;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

Low Emissivity Property of Amorphous Oxide Multilayer (SIZO/Ag/SIZO) Structure

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.13-15
    • /
    • 2017
  • Low emissivity glass for high transparency in the visible range and low emissivity in the IR (infrared) range was fabricated and investigated. The multilayers were have been fabricated, and consisted of two outer oxide layers and a middle layer of Ag as a metal layer. Oxide layers were formed by rf sputtering and metal layers were formed using by an evaporator at room temperature. SiInZnO (SIZO) film was used as an oxide layer. The OMO (oxide-metaloxide) structures of SIZO/Ag/SIZO were analyzed by using transmittance, AFM (atomic force microscopye), and XRD (X-ray diffraction). The OMO multilayer structure was designed to investigate the effect of Ag layer thickness on the optical property of the OMO structure.

Study of Plasma Process Induced Damages on Metal Oxides as Buffer Layer for Inverted Top Emission Organic Light Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Jin-Nyoung;Song, Byoung-Chul;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.543-544
    • /
    • 2008
  • In the fabrication of inverted top emission organic light emitting diodes (ITOLEDs), the organic layers are damaged by high-energy plasma sputtering process for transparent top anode. In this study, the plasma process induced damages on metal oxide hole injection layers (HILs) including $WO_3$, $MoO_3$, and $V_2O_5$ as buffer layer are examined. With the result of IV characteristic of hole-only devices, we propose that $MoO_3$ and $V_2O_5$ are stable materials against plasma sputtering process.

  • PDF

Optical and Electrical Properties of Oxide Multilayers

  • Han, Sangmin;Yu, Jiao Long;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.235-237
    • /
    • 2016
  • Oxide/metal/oxide (OMO) thin films were fabricated using amorphous indium-gallium-zinc-oxide (a-IGZO) and an Ag metal layer on a glass substrate at room temperature. The optical and electrical properties of the a-IGZO/Ag/a-IGZO samples changed systemically depending on the thickness of the Ag layer. The transmittance in the visible range tends to decrease as the Ag thickness increases while the resistivity, carrier concentration, and Hall mobility tend to improve. The a-IGZO/Ag (13 nm)/a-IGZO thin film with the optimum Ag thickness showed an average transmittance (Tav) of 71.7%, resistivity of 6.63 × 10−5 Ω·cm and Hall mobility of 15.22 cm2V−1s−1.

Transient Characteristic of a Metal-Oxide Semiconductor Field Effect Transistor in an Automotive Regulator in High Temperature Surroundings

  • Kang, Chae-Dong;Shin, Kye-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.178-181
    • /
    • 2010
  • An automotive IC voltage regulator which consists of one-chip based on a metal-oxide semiconductor field effect transistor (MOSFET) is investigated experimentally with three types of packaging. The closed type is filled with thermal silicone gel and covered with a plastic lid on the MOSFET. The half-closed type is covered with a plastic case but without thermal silicone gel on the MOSFET. Opened type is no lid without thermal silicone gel. In order to simulate the high temperature condition in engine bay, the operating circuit of the MOSFET is constructed and the surrounding temperature is maintained at $100^{\circ}C$. In the overshoot the maximum was mainly found at the half-closed packaging and the magnitude is dependent on the packaging type and the surrounding temperature. Also the impressed current decreased exponentially during the MOSFET operation.

Graphene field-effect transistor for radio-frequency applications : review

  • Moon, Jeong-Sun
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.