Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.017

Graphene field-effect transistor for radio-frequency applications : review  

Moon, Jeong-Sun (HRL Laboratories LLC)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 17-22 More about this Journal
Abstract
Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.
Keywords
graphene; field-effect transistor; transistor; ambipolar; low-noise amplifier; radio-frequency; mixer; multiplier; phase noise; radiometer; electromagnetic interference; Antenna; sensors; nanoelectromechanical system; interconnects; complementary metal-oxide-semiconductor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gaskill DK, Jernigan G, Campbell P, Tedesco JL, Culbertson J, VanMil B, Myers-Ward RL, Eddy C Jr, Moon J, Curtis D, Hu M, Wong D, McGuire C, Robinson J, Fanton M, Stitt T, Snyder D, Wang X, Frantz E. Epitaxial graphene growth on SiC wafers. ECS Trans, 19, 117 (2009). http://dx.doi.org/10.1149/1.3119535.
2 Takagi SI, Toriumi A, Iwase M, Tango H. On the universality of inversion layer mobility in Si MOSFET's: Part I - effects of substrate impurity concentration. IEEE Trans Electron Devices, 41, 2357 (1994). http://dx.doi.org/10.1109/16.337449.   DOI   ScienceOn
3 Cheng ZY, Currie MT, Leitz CW, Taraschi G, Fitzgerald EA, Hoyt JL, Antoniadas DA. Electron mobility enhancement in strained- Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates. IEEE Electron Device Lett, 22, 321 (2001). http://dx.doi.org/10.1109/55.930678.   DOI   ScienceOn
4 Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.   DOI   ScienceOn
5 Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405.   DOI   ScienceOn
6 Moon JS, Wong D, Hu M, Hashimoto P, Antcliffe M, McGuire C, Micovic M, Willadson P. 55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge. IEEE Electron Device Lett, 29, 834 (2008). http://dx.doi.org/10.1109/led.2008.2000792.   DOI   ScienceOn
7 Wang H, Nezich D, Kong J, Palacios T. Graphene frequency multipliers. IEEE Electron Device Lett, 30, 547 (2009). http://dx.doi.org/10.1109/led.2009.2016443.   DOI   ScienceOn
8 Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng LM. A highperformance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 96, 173104 (2010). http://dx.doi.org/10.1063/1.3413959.   DOI   ScienceOn
9 Moon JS, Curtis D, Hu M, Wong D, Campbell P, Jernigan G, Tedesco JL. Development toward wafer-scale graphene RF electronics. ECS Trans, 19, 35 (2009). http://dx.doi.org/10.1149/1.3119525.   DOI
10 Moon JS, Curtis D, Bui S, Marshall T, Wheeler D, Valles I, Kim S, Wang E, Weng X, Fanton M. Top-gated graphene field-effect transistors using graphene on si (111) wafers. IEEE Electron Device Lett, 31, 1193 (2010). http://dx.doi.org/10.1109/led.2010.2065792.
11 Moon JS, Curtis D, Bui S, Hu M, Gaskill DK, Tedesco JL, Asbeck P, Jernigan GG, Vanmil BL, Myers-Ward RL, Eddy CR Jr, Campbell PM, Weng X. Top-gated epitaxial graphene FETs on siface sic wafers with a peak transconductance of 600 mS/mm. IEEE Electron Device Lett, 31, 260 (2010). http://dx.doi.org/10.1109/led.2010.2040132.   DOI   ScienceOn
12 Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett, 30, 650 (2009). http://dx.doi.org/10.1109/led.2009.2020699.   DOI   ScienceOn
13 Kang HC, Karasawa H, Miyamoto Y, Handa H, Fukidome H, Suemitsu T, Suemitsu M, Otsuji T. Epitaxial graphene top-gate FETs on silicon substrates. International Semiconductor Device Research Symposium, College Park, MD (2009).
14 Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett, 92, 092102 (2008). http://dx.doi.org/10.1063/1.2889959.   DOI   ScienceOn
15 Kedzierski J, Hsu PL, Healey P, Wyatt PW, Keast CL, Sprinkle M, Berger C, de Heer WA. Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Devices, 55, 2078 (2008). http://dx.doi.org/10.1109/ted.2008.926593.   DOI   ScienceOn
16 Kedzierski J, Hsu PL, Reina A, Kong J, Healey P, Wyatt P, Keast C. Graphene-on-insulator transistors made using C on Ni chemical- vapor deposition. IEEE Electron Device Lett, 30, 745 (2009). http://dx.doi.org/10.1109/led.2009.2020615.   DOI   ScienceOn
17 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
18 Moon JS, Gaskill DK. Graphene: its fundamentals to future applications. IEEE Trans Microwave Theory Tech, 59, 2702 (2011). http://dx.doi.org/10.1109/tmtt.2011.2164617.   DOI   ScienceOn
19 Jornet JM, Akyildiz IF. Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. Proceedings of the 4th European Conference on Antennas and Propagation, Barcelona, Spain (2010).
20 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83.   DOI   ScienceOn
21 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI   ScienceOn
22 Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science, 315, 490 (2007). http://dx.doi.org/10.1126/science.1136836.   DOI   ScienceOn
23 Murali R, Brenner K, Yang Y, Beck T, Meindl JD. Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett, 30, 611 (2009). http://dx.doi.org/10.1109/led.2009.2020182.   DOI   ScienceOn
24 Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett, 100, 016602 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.016602.   DOI   ScienceOn
25 Akturk A, Goldsman N. Electron transport and full-band electronphonon interactions in graphene. J Appl Phys, 103, 053702 (2008). http://dx.doi.org/10.1063/1.2890147.   DOI   ScienceOn
26 Auciello O, Avouris P, Berger C, Butler JE, Carpick RW, De Heer WA, First PN, Fuhrer MS, Hersam MC, Lau CN, Liu J, MacDonald AH, Martel R, Moon JS, Seyller T, Stroscio JA, Srinivasan S, Sumant AV. Beyond silicon: carbon-based nanotechnology. MRS Bull, 35, 273 (2010).   DOI
27 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
28 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
29 Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Alexei N, Conrad MEH, First PN, De Heer WA. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f.   DOI   ScienceOn
30 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi.org/10.1126/science.1156965.   DOI   ScienceOn
31 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.   DOI   ScienceOn
32 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.   DOI
33 Moon JS. Graphene MOSFETs for RF applications. Proceedings of the 35th Annual GOMACTech Conference, Reno, NV (2010).
34 Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.   DOI   ScienceOn
35 Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR Jr, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074.   DOI   ScienceOn
36 Wang H, Hsu A, Wu J, Kong J, Palacios T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett, 31, 906 (2010). http://dx.doi.org/10.1109/led.2010.2052017.   DOI   ScienceOn