• Title/Summary/Keyword: metal nanoparticle layer

Search Result 29, Processing Time 0.025 seconds

마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발 (Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter)

  • 이동근;박석주;박영옥;류정인
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

Nanoparticle Ferrite Multilayers Prepared by New Self-Assembling Sequential Adsorption Method

  • Kim, Yeong-Il;Kang, Ho-Jun;Kim, Don;Lee, Choong-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.593-599
    • /
    • 2003
  • The nanoparticle magnetite of which diameter was about 3 nm was synthesized in a homogeneous aqueous solution without a template. The synthesized magnetite nanoparticle was easily oxidized to maghemite in an ambient condition. The magnetic properties of the ferrite nanoparticle show superparamagnetism at room temperature and its blocking temperature is around 93 K. Modifying the sequential adsorption method of metal bisphosphonate, we have prepared a multilayer thin film of the ferrite nanoparticle on planar substrates such as glass, quartz and Si wafer. In this multilayer the ferrite nanoparticle layer and an alkylbisphosphonate layer are alternately placed on the substrates by simple immersion in the solutions of the ferrite nanoparticle and 1, 10-decanediylbis (phosphonic acid) (DBPA), alternately. This is the first example, as far as we know, of nanoparticle/alkyl-bisphosphonate multilayer which is an analogy of metal bisphosphonate multilayer. UV-visible absorption and infrared reflection-absorption studies show that the growth of each layer is very systematic and the film is considerably optically transparent to visible light of 400-700 nm. Atomic force microscopic images of the film show that the surface morphology of the film follows that of the substrate in μm-scale image and the nanoparticle-terminated surface is differentiated from the DBPA-terminated one in nm-scale image. The magnetic properties of this ferrite/DBPA thin film are almost the same as those of the ferrite nanoparticle powder only.

밀집된 금속 나노 입자 레이어의 광학 특성 (Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers)

  • 전현지;최진일
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.701-708
    • /
    • 2020
  • Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

마이크로-필터 상에 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발 (Development of Membrane Filter with Nanostructured Porous Layer by Coating Metal Nanoparticles onto a Micor-Filter)

  • 이동근;박석주;박영옥;류정인
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.591-595
    • /
    • 2007
  • 기존 마이크론 금속섬유 필터를 지지체로 그 표면 위에 나노입자 증착 후, 열처리를 하여 나노구조 기공층이 표면에 부착 형성된 멤브레인 필터를 제작하였다. 가지상 구조의 나노입자 응집체를 마이크론 금속섬유 필터상에 부착함으로써 기존 금속 멤브레인 필터에 비하여 여과성능이 향상된 나노구조 기공층 멤브레인 필터를 개발하였다. 증착한 나노구조 기공층을 지지체 필터 표면상에 부착시키기 위한 열처리 온도가 증가함에 따라 나노입자 응집체의 수축 현상으로 인하여 나노구조 기공층 멤브레인 필터의 차압은 감소하였지만, 여과효율의 감소는 미미하였다.

리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상 (Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance)

  • 정요한;석도형;이상현;신원호;손희상
    • 멤브레인
    • /
    • 제30권1호
    • /
    • pp.30-37
    • /
    • 2020
  • 리튬 덴드라이트의 효과적인 억제를 위해 유/무기 복합체를 리튬메탈 전극의 보호층으로 사용하였다. 유기물로는 PVDF-HFP가 사용되었으며 무기물로는 TiO2가 사용되었다. 유기물로 사용된 PVDF-HFP는 높은 유연성을 가지는 고분자로서 무기물의 matrix 역할을 하며, 무기물로 사용된 TiO2 나노입자는 보호막의 기계적 강도와 이온전도성을 향상시켜주는 역할을 하였다. 합성된 보호막은 SEM, AFM, XRD를 통하여 PVDF-HFP matrix에 TiO2가 잘 분산되어 있는 형태인 것을 확인할 수 있었다. 또한 전기화학적 분석 결과, 향상된 기계적 물성과 이온전도성으로 인해 polymer-inorganic composite은 비교 샘플(untreated 와 PVDF-HFP 보호층) 대비 100번째 사이클까지 80%의 높은 쿨롱 효율 및 20 mV 미만의 낮은 과전압을 나타내었다.

Pt 나노입자와 Hybrid Pt-$SiO_2$ 나노입자의 합성과 활용 및 입자박막 제어 (Synthesis and application of Pt and hybrid Pt-$SiO_2$ nanoparticles and control of particles layer thickness)

  • 최병상
    • 한국전자통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.301-305
    • /
    • 2009
  • Pt 나노입자의 합성과 이를 이용한 hybrid Pt-$SiO_2$ 나노입자의 합성을 성공적으로 수행하였으며, self-assembled Pt nanoparticles monolayer를 charge trapping layer로 활용하는 metal-oxide-semiconductor(MOS) type memory의 한 예로 non-volatile memory(NVM)의 응용을 보임으로써 나노입자의 활용 가능성을 보이고, 또한, hybrid Pt-$SiO_2$ 나노입자 박막 층의 제어를 통한 MOS type memory device에의 보다 더 넓은 활용 가능성을 보이고자 하였다.

  • PDF

스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터 제작 및 특성 분석 (The Study of nc-ZnO/ZnO Field-effect Transistors Fabricated by Spray-pyrolysis Process)

  • 조준희
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.22-25
    • /
    • 2022
  • Metal oxide semiconductor (MOS) based on spray-pyrolysis deposition technique has attracted large attention due to simple and low-cost processibility while preserving their intrinsic optical and electrical characteristics. However, their high process temperature limits practical applications. Here, we demonstrated the nc-ZnO/ZnO field-effect transistors (FETs) via spray-pyrolysis as incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. The nc-ZnO/ZnO FETs exhibit good quality of electrical properties. Our experiments reveal that nc-ZnO in active layer enhance electrical characteristics.

스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터의 광학적 노출에 대한 열화 현상 분석 (The Instability Behaviors of Spray-pyrolysis Processed nc-ZnO/ZnO Field-effect Transistors Under Illumination)

  • 조준희
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.78-82
    • /
    • 2023
  • Metal oxide semiconductor (MOS) adapting spray-pyrolysis deposition technique has drawn large attention based on their high quality of intrinsic and electrical properties in addition to simple and low-cost processibility. To fully utilize the merits of MOS field-effect transistors (FETs) , transparency, it is important to understand the instability behaviors of FETs under illumination. Here, we studied the photo-induced properties of nc-ZnO/ZnO field-effect transistors (FETs) based on spray-pyrolysis under illumination which incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. Our experiments reveal that nc-ZnO in active layer suppressed the light instabilities of FETs.

  • PDF