• Title/Summary/Keyword: metal ion effect

Search Result 512, Processing Time 0.027 seconds

Surface Characterization According to the Bias Voltage of the TiAgN Coating Film Layer Formed by the AIP Process (AIP법으로 형성된 TiAgN 코팅필름의 바이어스전압에 따른 표면 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kang, Byeong-Mo;Jeong, Woon-Jo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.253-257
    • /
    • 2015
  • The implanting of metal products is performed with numerous surface treatments because of toxicity and adhesion. Recently, the surface modification of metal products has been actively studied by coating the surface of the TiC or TiN film. We prepared a Ti(10%)Ag Target which may be used in dental oral material by, using the AIP(arc ion plating) system TiAgN coating layer that was deposited on Ti g.23. The purpose of this study was to establish the optimal bias voltage conditions of the coated TiAgN layer formed by the AIP process. The TiAgN coatings were prepared with different bias voltage parameters (0V to -500V) to investigate the effect of bias voltage on their mechanical and chemical properties. The SEM(scanning electron microscope), EDS(energy dispersive X-ray spectrometer), XRD(X-ray diffraction), micro-hardness, and potentiodynamic polarization were measured and the surface characteristics of the TiAgN coating layers were evaluated. The TiAgN coating layer had different mechanical characteristics based on the bias voltage, which also showed differences in thickness and composition.

Stability of Black Soybean Pigment Extract (검정콩 종피 색소추출액의 안정성)

  • Son, Jun-Ho;Choung, Myoung-Gun;Choi, Hee-Jin;Jang, Un-Bin;Bae, Jong-Ho;Lee, Hee-Duck;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.179-184
    • /
    • 2002
  • To examine utilization of Korean black soybean as a natural pigment, the effects of temperature, carbohydrate, organic acid, vitamin C and metal ion were investigated. Korean black soybean pigment was more stable than other anthocyanin pigments when temperature was abused. There was no darkness effect in carbohydrate. In organic acid, the color intensity was increased. The vitamin C addition negatively affected on color of anthocyanin. Among the metal ions tested, $Cu^{2+}$ and $Zn^{2+}$ was not affected but $Mn^{2+}$ makes it unstable. Results indicate that Korean black soybean pigment was more stable than other anthocyanin pigment in various environment at pH 3.

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

Selective Separation of Zr(IV) and Th(IV) by (polystyrene-divinylbenzene)-thiazolylazo Chelating Resins(I) ((Polystyrene-divinylbenzene)-thiazolylazo형 킬레이트 수지에 의한 Zr(IV) 및 Th(IV)의 선택적인 분리(I))

  • Lee, Won;Yook, Jin-Kyung;Lee, Si-Eun;Lee, Chang-Heon
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2000
  • Two chelating resins, XAD-16-TAC and XAD-16-TAO were synthesized by Amberlite XAD-16 macroreticular resin with 2-(2-thiazolylazo)-p-cresol (TAC) and 4-(2-thiazolylazo)-orcinol (TAO) as functional groups. The sorption behaviour of Zr(IV), Th(IV) and U(VI) with two chelating resins were examined with respect to the effect of pH and masking agent by batch methods. It was obtained that the optimum pH was in the range of 5-6, and two chelating resins showed good separation efficiency of Zr(IV) or Th(IV) by using $NH_4F$ as a masking agent. Characteristics of desorption were investigated with 0.1-2 M $HNO_3$ as desorption agent. It was found that 2 M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV). XAD-16-TAC resin is applied to separation and preconcentration of trace Zr(IV) from mixed metal ions. Also, Th(IV) ion can be successfully separated from U(VI) and Zr(IV) ion by using XAD-16- TAO resin.

  • PDF

Extraction Characteristics and Antioxidant Activity of Ethanol Extract of Rhus javanica Bark (붉나무 껍질 에탄올 추출물의 추출특성과 항산화 활성에 관한 연구)

  • Noh, Jeong-Sook;Park, Sun-Yi;Jeong, Kap-Seop
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.555-561
    • /
    • 2017
  • This study was conducted to investigate the several physicochemical extraction characteristics and the antioxidant activities of ethanol extract from Rhus javanica bark. The contents of soluble solid and sugar in extract was measured to 73.5 mg/100g dry basis and $17.8^{\circ}Brix$, respectively. The contents of total aromatics, total flavonoids and total phenolic compounds was measured to 0.508 in absorbance, 49.88 mg/100g and 296.6 mg/100g, respectively. The reducing power of extract was about 27.5 % of ascorbic acid with the same soluble solid contents of the extract. But the ferric reducing antioxidant power and the DPPH radical scavenging ability of extract were measured to equivalent to those of ascorbic acid. The metal ion chelating ability of the extract was 81.58 % whereas that of ascorbic acid was 74.73 %. The nitrite scavenging ability of the extract was measured to 51.76 % at pH 2. And the antioxidative effect of the extract on soybean oil was observed with Rancimat test.

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

Effect of Low-Molecularization on Rheological Properties of Alginate (알긴산의 물성에 미치는 저분자화의 영향)

  • LEE Dong-Soo;KIM Hyeung-Rak;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.82-89
    • /
    • 1998
  • Partial hydrolyzing condition for low-molecularized alginate and rheological properties such as viscosity, solubility, emulsitying ability, oil absorption capacity, bile acids binding and metal ion binding of the low-molecularized alginates from the sea mustard ( Undaria pinnatifida) and giant kelp (Macrocystis pyrifera) were investigated. Alginate from sea mustard was regularly hydrolyzed with the increase of HCl concentration in the range of 0.2 N to 0.5 N and with the prolonged reaction time at $100^{\circ}C$. The molecular weight of alginate was decreased to a part of 100 after hydrolysis for 50 min with 0.3 N HCl. The ratio of mannuronate to guluronate was increased with the acid hydrolysis and total yield was estimated to be $75\%\~80\%$. Low-molecularization of alginate was featured in the apparent decrease of viscosity, whereas solubility, emulsifying ability, and bile acids binding ability were increased with the low-molecularization. Oil absorption capacity of the acid$\cdot$alkali soluble alginate was slightly higher than that of the water soluble alginate. Metal ion binding capacity was the highest in acid$\cdot$alkali soluble alginate, and decreased with the low-molecularization.

  • PDF

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

Investigation of characteristic on Solution-Processed Al-Zn-Sn-O Pseudo Metal-Oxide-Semiconductor Field-Effect-Transistor using microwave annealing

  • Kim, Seung-Tae;Mun, Seong-Wan;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.206.2-206.2
    • /
    • 2015
  • 최근 비정질 산화물 반도체 thin film transistor(TFT)는 차세대 투명 디스플레이로 많은 관심을 받고 있으며 활발한 연구가 진행되고 있다. 산화물 반도체 TFT는 기존의 비정질 실리콘 반도체에 비하여 큰 on/off 전류비, 높은 이동도 그리고 낮은 구동전압으로 인하여 차세대 투명 디스플레이 산업에 적용 가능하다는 장점이 있다. 한편 기존의 sputter나 evaporator를 이용한 증착 방식은 우수한 막의 특성에도 불구하고 많은 시간과 제작비용이 든다는 단점을 가지고 있다. 따라서 본 연구에서는 별도의 고진공 시스템이 필요하지 않을 뿐만 아니라 대면적화에도 유리한 용액공정 방식을 이용하여 박막 트렌지스터를 제작하였으며 thermal 열처리와 microwave 열처리 방식에 따른 전기적 특성을 비교 및 분석하고 각 열처리 방식의 열처리 온도 및 조건을 최적화 하였다. 제작된 박막 트렌지스터는 p-type bulk silicon 위에 산화막이 100 nm 형성된 기판에 spin coater을 이용하여 Al-Zn-Sn-O 박막을 형성하였다. 연속해서 photolithography 공정과 BOE (30:1) 습식 식각 과정을 이용해 활성화 영역을 형성하여 소자를 제작하였다. 제작 된 소자는 Pseudo-MOS FET구조이며, 프로브 탐침을 증착 된 채널층 표면에 직접 접촉시켜 소스와 드레인 역할을 대체하여 동작시킬 수 있어 전기적 특성평가가 용이하다는 장점을 가지고 있다. 그 결과, microwave를 통해 열처리한 소자는 100oC 이하의 낮은 열처리 온도에도 불구하고 furnace를 이용하여 열처리한 소자와 비교하여 subthreshold swing(SS), Ion/off ratio, field-effectmobility 등이 개선되는 것을 확인하였다. 따라서, microwave 열처리 공정은 향후 저온 공정을 요구하는 MOSFET 제작 시의 훌륭한 대안으로 사용 될 것으로 기대된다.

  • PDF

Effect of SO42- Ion on Corrosion and Electrochemical Migration Characteristics of Eutectic SnPb Solder Alloy (공정조성 SnPb Solder 합금의 부식 및 Electrochemical Migration 특성에 미치는 SO42- 이온의 영향)

  • Jung, Ja-Young;Yoo, Young-Ran;Lee, Shin-Bok;Kim, Young-Sik;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Electrochemical migration phenomenon is correlated with ionization of anode electrode, and ionization of anode metal has similar mechanism with corrosion phenomenon. In this work, in-situ water drop test and evaluation of corrosion characteristics for SnPb solder alloys in $Na_2SO_4$ solutions were carried out to understand the fundamental electrochemical migration characteristics and to correlate each other. It was revealed that electrochemical migration behavior of SnPb solder alloys was closely related to the corrosion characteristics, and Sn Ivas primarily ionized in ${SO_4}{^2-}$ solutions. The quality of passive film formed at film surface seems to be critical not only for corrosion resistance but also for electrochemical migration resistance of solder alloys.