Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.5.262

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature  

Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.5, 2014 , pp. 262-264 More about this Journal
Abstract
Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.
Keywords
Ga-doped ZnO; Ag-doped ZnO; NWs; Ethanol gas sensor; Hot walled pulsed laser deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. W. Kim, Y. W. Song, S. P. Chang, I. H. Kim, S. S. Kim, and S. Y. Lee, Thin Solid Films, 518, 1190 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.03.229].   DOI   ScienceOn
2 Y. W. Song, K. W. Kim, J. P. Ahn, G. E. Jang, and S. Y. Lee, Nanotechnology, 20, 275606 (2009). [DOI: http://dx.doi.org/10.1088/0957-4484/20/27/275606].   DOI   ScienceOn
3 M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, Appl. Phys. Lett., 93, 263103 (2008). [DOI: http://dx.doi.org/10.1063/1.3046726].   DOI   ScienceOn
4 A. Laskin and J. P. Cowin, Anal. Chem., 73, 1023 (2001). [DOI: http://dx.doi.org/10.1021/ac0009604].   DOI   ScienceOn
5 G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, and S. T. Lee, Nano Lett., 8, 2591 (2008). [DOI: http://dx.doi.org/10.1021/nl073022t].   DOI   ScienceOn
6 C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett., 84, 1540 (2006). [DOI: http://dx.doi.org/10.1063/1.1651328].   DOI   ScienceOn
7 H. C. Hsu, Y. K. Tseng, H. M. Cheng, J. H. Kuo, and W. F. Hsieh, J. Crystal Growth, 261, 520 (2004). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2003.09.040].   DOI   ScienceOn
8 Y. W. Song and S. Y .Lee, Thin Solid Films, 518, 1323 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.01.191].   DOI   ScienceOn
9 K. J. Kim and Y. R. Park, Appl. Phys. Lett., 78, 3761 (2001).
10 L. K. Rao and V. Vinni, Appl. Phys. Lett., 63, 608 (1993). [DOI: http://dx.doi.org/10.1063/1.109665].   DOI   ScienceOn
11 M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, J. Cryst. Growth, 220, 254 (2000). [DOI: http://dx.doi.org/10.1016/S0022-0248(00)00834-4].   DOI   ScienceOn
12 P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett., 82, 1117 (2003). [DOI: http://dx.doi.org/10.1063/1.1553997].   DOI   ScienceOn
13 R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, and E. Fortunato, J. Appl. Phys., 101, 044505 (2007). [DOI: http://dx.doi.org/10.1063/1.2495754].   DOI   ScienceOn
14 J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett., 83, 3401 (2003). [DOI: http://dx.doi.org/10.1063/1.1621729].   DOI   ScienceOn