• Title/Summary/Keyword: metal ion effect

Search Result 513, Processing Time 0.026 seconds

Preparation and characterization of polymeric membrane pH Sensors (고분자막 pH 센서 제작 및 특성)

  • Cho, Dong-Hoe;Jeong, Seong-Suk;Chung, Koo-Chun;Lee, Kyung-Ho;Park, Myon-Yong;Kim, Byung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.35-40
    • /
    • 1996
  • The polymeric membrane pH sensor based on HDBA(hexyldibenzylamine) or HDPA(hexyldiphenylamine) as hydrogen ion carrier was prepared and electrochemical characterization for the variation of a temperature and membrane thickness were studied on. The sensor based on HDPA was not responded selectively to hydrogen ion. The sensor based on HDBA was responded linearly to hydrogen ion in the range of pH 2 - pH 10, it showed the fast response time of 30 - 50sec. and Nernstian slope of 53.6mV/pH. The interfering effect on alkali and alkaline earth metal ions of pH sensor were lower than glass pH sensor. There was shown a good reproducibility and stability with the precision of 2 - 4mV (${\pm}0.1mV$).

  • PDF

Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping (칼슘 도핑을 통한 고 에너지 밀도를 가지는 Ni-rich 층상 구조형 양극 소재의 안정화)

  • Kang, Beomhee;Hong, Soonhyun;Yoon, Hongkwan;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.273-278
    • /
    • 2018
  • Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. $LixCoO_2$ has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase $LiNi_xMn_yCo_{1-x-y}O_2$ (NMC, both x and y < 1), which shows better battery performance than unsubstituted $LiCoO_2$. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound $Li(Ni_{0.83}Co_{0.12}Mn_{0.05})O_2$, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.

Studies on the Development of Photoreceptor in the Nonchromatophore Organisms (II) - Effects of organic compound and metal ion influx of Light-Induced Mitochondrial ATPase in the Lentinus edodes(Berk.) Sing - (무흡광색소 식물의 감광수용체 개발 연구(II) - 표고버섯의 광감응성 mitochondrial ATPase의 유기물 및 금속이온 유입 효과 -)

  • Min, Tae-Jin;Cho, Suck-Woo;Kim, Young-Soon;Kim, Jae-Woong;Mheen, Tae-Ick
    • The Korean Journal of Mycology
    • /
    • v.15 no.4
    • /
    • pp.224-230
    • /
    • 1987
  • Effects Of organic compound, photosensitizer and $K^+$ ion influx. On the light-induced ATPase of mitochondria in L. edodes purified by linear sucrose density gradient centrifugation were studied. The mitochondrial ATPase activity was investigated by various wavelength illumination at dark state. The mitochondrial ATPase was activated 139% and 128% by 10m mol dithiothreitol and 0.1m mol quinacrine, respectively. This enzyme also was activated 36% by 0.1m mol phenazine methosulfate as photosensitizer. But, 100 mg oligomycin and 1m mol phlorizin inhibited activity of enzyme to 48% and 45%, respectively. Its optimum wavelength was 690 nm on the effect of $K^+$ ion influx, its optimum pH and temperature were found to be 7.2 and $55^{\circ}C$.

  • PDF

Solvent Extraction of Copper from $CuCl_2-NiCl_2-CoCl_2$ Solutions by Alamine336 and LIX84 ($CuCl_2-NiCl_2-CoCl_2$용액으로부터 Alamine336과 LIX84에 의한 구리의 용매추출)

  • Lee Man-Seung;Ahn Jong-Gwan;Ahn Jae-Woo
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.12-17
    • /
    • 2002
  • Solvent extraction experiments have been performed to separate copper from $CuCl_2$-$NiCl_2$-$CoCl_2$$ solutions using Alamine336 and LIX84. The complex formation tendency between metal ions and chloride ion had a great effect on the distribution coefficients of Cu, Co and Ni ions and separation factor of Cu to Co and Ni. In the experimental ranges of chloride ion concentration from 0.5 to 4.0 M, LIX84 was superior to Alamine336 in separating copper from cobalt. When the volume percentage of LIX84 and Alamine336 was varied from 5 to 40%, LIX84 was more effective than Alamine336 in separating Cu from Co and Ni in solutions in which the chloride ion concentration was 1.0 M.

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

A study for omega-shaped gate ZnO nanowire FET (Omega 형태의 게이트를 갖는 ZnO 나노선 FET에 대한 연구)

  • Keem, Ki-Hyun;Kang, Jeong-Min;Yoon, Chang-Joon;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1297-1298
    • /
    • 2006
  • Omega-shaped-gate (OSG) nanowire-based field effect transistors (FETs) have been attracted recently attention due to their highdevice performance expected from theoretical simulations among nanowire-based FETs with other gate geometries. OSG FETs with the channels of ZnO nanowires were successfully fabricated in this study with photolithographic processes. In the OSG FETs fabricated on oxidized Si substrates, the channels of ZnO nanowires with diameters of about 60 nm are coated surroundingly by $Al_{2}O_{3}$ as gate dielectrics with atomic layer deposition. About 80 % of the surfaces of the nanowires coated with $Al_{2}O_{3}$ is covered with gate metal to form OSG FETs. A representative OSG FET fabricated in this study exhibits a mobility of 98.9 $cm^{2}/Vs$, a peak transconductance of 0.4 ${\mu}S$, and an Ion/Ioff ratio of $10^6$ the value of the Ion/Ioff ratio obtained from this OSG FET is the highest among nanowire-based FETs, to our knowledge. Its mobility, peak transconductance, and Ion/Ioff ratio arc remarkably enhanced by 11.5, 32, and $10^6$ times, respectively, compared with a back-gate FET with the same ZnO nanowire channel as utilized in the OSG FET.

  • PDF

A Study on the Solvent Extraction Mechanism of Nickel(Ⅱ) with N-Benzylisonitrosoacetylacetone Imine by Spectrophotometry (분광광도법에 의한 Ni(Ⅱ)-N-Benzylisonitrosoacetylacetone Imine착물의 용매추출 반응메카니즘)

  • Heung Lark Lee;Zun Ung Bae;Dong-Gyu Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.546-551
    • /
    • 1992
  • Reaction mechanism on the solvent extraction of nickel(Ⅱ) with N-benzylisonitrosoacetylacetone imine(HIAANB) was studied spectrophotometrically. Absorbance was measured by changing the ligand HIAANB concentration in the chloroform organic phase and the pH values in the agueous solution phase. From the absorbance data, the reaction rate was found to be the first order for HIAANB concentration and the inverse first one for [$H^+$]. The rate determining step of the extraction reaction and the rate equation are as follows; $Ni^{2+}$+HIAANB ${\to}$ Ni-IAANB$^+$$H^+$ -d[Ni$^{2+}$] / dt = K'[Ni$^{2+}$][HIAANB]$_0$ / [H$^+$] Calibration curve for the spectrophotometric determination of nickel(Ⅱ) ion in the aqueous solution was linear below the concentration of 1.17 ppm at the optimum experimental condition. And the ligand-to-metal ratio, the relationship between extractability and pH of the aqueous phase, and the effect of diverse ion on the determination of nickel(Ⅱ) ion were examined.

  • PDF

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode (야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향)

  • Lee, Jae Young;Lee, Bora;Kim, Nak-Won;Jang, Boyun;Kim, Junsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

The effect of polyethypeneglycol on the electrocrystallization of Zn electrodeposition (아연 전기도금의 전착성에 미치는 폴리에틸렌글리콜(polyethyleneglycol)의 영향)

  • 김현태;김태엽;이재륭;장삼규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.590-596
    • /
    • 1999
  • The effects of additives on the Zn electrodeposition in chloride-based electrolyte were investigated using circulation cell with three electrodes system. The cathodic polarization increased with the addition of polyethylenglycol (hereafter PEG) in electrolyte. This was attributed to the adsorption of the additives on the electrode and the inhibition of migration of metal ion. The PEG, however, did not have any noticeable effect on the properties of plating solutions at the concentration used. The effect of PEG on the electrocrystallization was related to its molecular weight. With the increase of molecular weight, the cathodic polarization increased, while the surface roughness was improved with the decrease of brightness. Especially, the PEG mixed with different molecular weights was the most effective. The orientation and the type of the deposited grains were changed and refined by PEG, which resulted in the modification of deposited surface roughness and brightness.

  • PDF