Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.273

Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping  

Kang, Beomhee (Department of Materials Science and Engineering, Chungnam National University)
Hong, Soonhyun (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Hongkwan (Department of Materials Science and Engineering, Chungnam National University)
Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
Kim, Chunjoong (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 273-278 More about this Journal
Abstract
Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. $LixCoO_2$ has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase $LiNi_xMn_yCo_{1-x-y}O_2$ (NMC, both x and y < 1), which shows better battery performance than unsubstituted $LiCoO_2$. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound $Li(Ni_{0.83}Co_{0.12}Mn_{0.05})O_2$, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.
Keywords
cathode; layered oxide; calcium; li-ion battery;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. T. Myung, F. Maglia, K. J. Park, C. S. Yoon, P. Lamp, S. J. Kim and Y. K. Sun, ACS Energy Lett., 2, 196 (2017).   DOI
2 K. J. Park, B. B. Lim, M. H. Choi, H. G. Jung, Y. K. Sun, M. Haro, N. Vicente, J. Bisquert and G. Garcia- Belmonte, J. Mater. Chem. A, 3, 22183 (2015).   DOI
3 B. B. Lim, S. T. Myung, C. S. Yoon and Y. K. Sun, ACS Energy Lett., 1, 283 (2016).   DOI
4 S. W. Woo, S. T. Myung, H. Bang, D. W. Kim and Y. K. Sun, Electrochim. Acta., 54, 3851 (2009).   DOI
5 K. Amine, Z. Chen, Z. Zhang, J. Liu, W. Lu, Y. Qin, J. Lu, L. Curtis and Y. K. Sun, J. Mater. Chem., 21, 17754 (2011).   DOI
6 Y. Cho, P. Oh and J. Cho, Nano Lett., 13, 1145 (2013).   DOI
7 M. H. Kim, H. S. Shin, D. Shin and Y. K. Sun, J. Power Sources, 159, 1328 (2006).   DOI
8 Y. Huang, Z. X. Wang, X. H. Li, H. J. Guo and J. X. Wang, Trans. Nonferrous Met. Soc. China, 25, 2253 (2015).   DOI
9 D. P. Wang, I. Belharouak, G. W. Zhou and K. Amine, J. Electrochem. Soc., 160, A3108 (2013).   DOI
10 F. Schipper, E. M. Erickson, C. Erk, J. Y. Shin, F. F. Chesneau and D. Aurbach, J. Electrochem. Soc., 164, A6220 (2017).   DOI
11 J. M. Zheng, M. Gu, J. Xiao, P. J. Zuo, C. M. Wang and J. G. Zhang, Nano Lett., 13, 3824 (2013).   DOI
12 A. v. Bommel, J. R. Dahn, Chem. Mater., 21, 1500 (2009).   DOI
13 K. Park, J. H. Park, S. G. Hong, B. Choi, S. Heo, S. W. Seo, K. Min and J. H. Park, Sci. Rep., 7, 44557 (2017).   DOI
14 S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, Adv. Energy Mater., 4, 1300787 (2014).   DOI
15 A. Manthiram, J. C. Knight, S. T. Myung, S. M. Oh and Y. K. Sun, Adv. Energy Mater., 6, 1501010 (2016).   DOI
16 Y. K. Sun, B. R. Lee, H. J. Noh, H. Wu, S. T. Myung and K. Amine, J. Mater. Chem., 21, 10108 (2011).   DOI
17 J. Y. Liao and A. Manthiram, J. Power Sources, 282, 429 (2015).   DOI
18 W. Cho, S. M. Kim, J. H. Song, T. Yim, S. G. Woo, K. W. Lee, J. S. Kim and Y. J. Kim, J. Power Sources, 282, 45 (2015).   DOI
19 C. W. Wang, X.L. Ma, J. G. Cheng, L. Q. Zhou, J. T. Sun and Y. H. Zhou, Solid State Ionics, 177, 1027 (2006).   DOI
20 F. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin and M. M. Doeff, Nat. Commun., 5, 3529 (2014).   DOI
21 H. B. Xie, K. Du, G. R. Hu, J. G. Duan, Z. D. Peng, Z. J. Zhang and Y. B. Cao, J. Mater. Chem. A, 3 20236 (2015).   DOI
22 M. H. Lee and Y. Kang, S. T. Myung, and Y. K. Sun, Electrochim. Acta., 50, 939 (2004).   DOI
23 D. Kang, N. Arailym, J. E. Chae and S. S. Kim, J. Korean Electrochem. Soc., 16, 191 (2013).   DOI
24 K. K. Cheralathan, N. Y. Kang, H. S. Park, Y. J. Lee, W. C. Choi, Y. S. Ko and Y. K. Park, J. Power Sources, 195, 1486 (2010).   DOI
25 C. Deng, S. Zhang, B. L. Fu, S. Y. Yang and L. Ma, J. Alloys Compd., 496, 521 (2010).   DOI
26 H. J. Noh, S. Youn, C. S. Yoon, and Y. K. Sun, J. Power Sources, 233, 121 (2013).   DOI
27 L. J. Li, X. H. Li, Z. X. Wang, L. Wu, J. C. Zheng and J. H. Li, Trans. Nonferrous Met. Soc. China, 20, S279 (2010).   DOI
28 J. M. Zheng, W. H. Kan and A. Manthiram, ACS Appl. Mater. Interfaces, 7, 6926 (2015).   DOI
29 W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim and J. Cho, Angew. Chem. Int. Ed., 54, 4440 (2015).   DOI