• Title/Summary/Keyword: metal complex

Search Result 1,252, Processing Time 0.032 seconds

CFD ANALYSIS OF HEAVY LIQUID METAL FLOW IN THE CORE OF THE HELIOS LOOP

  • Batta, A.;Cho, Jae-Hyun;Class, A.G.;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.656-661
    • /
    • 2010
  • Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. By utilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER$^2$) facility, a thermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advanced nuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized with available pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separated by complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the rest of the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is found that the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accounted for; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptions used for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD also requires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience with liquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained and compared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducer located between the core inlet and outlet at a flow rate of 13.57kg/s.

Cadmium-Substituted Concanavalin A and Its Trimeric Complexation

  • Park, Yeo Reum;Kim, Da Som;Lee, Dong-Heon;Kang, Hyun Goo;Park, Jung Hee;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2106-2112
    • /
    • 2018
  • Concanavalin A (ConA) interacts with carbohydrates as a lectin, and recent reports proposed its application for detecting a diversity of viruses and pathogens. Structural studies have detailed the interaction between ConA and carbohydrates and the metal coordination environment with manganese and calcium ions (Mn-Ca-ConA). In this study, ConA was crystallized with a cadmium-containing precipitant, and the refined structure indicates that $Mn^{2+}$ was replaced by $Cd^{2+}$ (Cd-Ca-ConA). The structural comparison with ConA demonstrates that the metal-coordinated residues of Cd-Ca-ConA, that is Glu8, Asp10, Asn14, Asp19, and His24, do not have conformational shifts, but residues for sugar binding, including Arg228, Tyr100, and Leu99, reorient their side chains, slightly. Previous studies demonstrated that excess cadmium ions can coordinate with other residues, including Glu87 and Glu183, which were not coordinated with $Cd^{2+}$ in this study. The trimeric ConA in this study coordinated $Cd^{2+}$ with other residues, including Asp80 and Asp82, for complex generation. The monomer does not have specific interaction near interface regions with the other monomer, but secondary cadmium coordinated with two aspartates (Asp80 and Asp82) from monomer 1 and one aspartate (Asp16) from monomer 2. This study demonstrated that complex generation was induced via coordination with secondary $Cd^{2+}$ and showed the application potential regarding the design of complex formation for specific interactions with target saccharides.

Theoretical Study of C-H σ-Bond Activation and Related Reactions

  • Sakaki, Shigeyoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.829-831
    • /
    • 2003
  • Various theoretical studies of σ-bond activation of organic molecules by transition metal complexes arereviewed. In the homolytic σ-bond activation, the d orbital energy level of the central metal is an importantfactor, as well known. At the same time, the electron-withdrawing substituent which stabilizes the sp3 orbitalaccelerates the homolytic σ-bond activation. In the heterolytic C-H σ-bond activation of RH by $MXL_n$, the XHbond formation is an important driving force, where $MRL_n$ and HX are formed as products. The heterolytic σ-bond activation is also understood in terms of the electrophilic attack of the metal center to the substrate.

Fabricating a Ceramic-Pressed-to-Metal Restoration with Computer-Aided Design, Computer-Aided Manufacturing and Selective Laser Sintering: A Case Report

  • Lee, Ju-Hyoung;Kim, Hyung Gyun
    • Journal of Korean Dental Science
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • Even though a conventional metal ceramic restoration is widely in use, its laboratory procedure is still technique-sensitive, complex, and time-consuming. A ceramic-pressed-to-metal restoration (PTM) can be a reliable alternative. However, simplified laboratory procedure for a PTM is still necessary. The article is to propose a technique that reduces time and effort to fabricate a PTM with the aid of computer-aided design, computer-aided manufacturing and selective laser sintering technologies.

Microstructural Analysis of the Solidified Arsenic-containing Heavy Metal Sludge (비소를 함유한 중금속슬러지 고화체의 미세구조적 분석)

  • Kim, Yeong-Kwan;Jeong, Myoung-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.169-174
    • /
    • 1996
  • Microstructural analyses of synthetic arsenic-containing heavy metal sludges solidified with Portland cement were performed. Heavy metal sludges containing 0.04M of cadmium, chromium, copper, lead, and arsenic were prepared by sodium hydroxide precipitation and successive vacuum filtration. The sludges mixed with cement were cured for 14 days. The solidified sample was characterized by 1) leaching test, 2) scanning electron microscopy and 3) X-ray diffractometry. Of the metals tested, only Pb concentration in the leachate exceeded the Korean regulatory limit. The level of lead in the leachate was as high as 10 times the regulatory limit. X-ray analysis suggested that the metal hydroxides might be present in complex or impure crystalline phases.

  • PDF

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Transport of Metal Ions Through the Crosslinked Chitosan Membrane (가교 Chitosan막에 의한 금속 이온의 투과 특성)

  • Kim, Chong-Bae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.416-422
    • /
    • 1993
  • In order to prepare high performance polymeric membrane, the crosslinked chitosan(C. Chitosan)membrane was prepared, the transport and the selective separation of the metal ions through the membrane were investigated. It was observed that the transport rates of the metal ions through the membrane increased according to the decreasing of the initial pH in downstream solution. Proton pump mechanism for this transport phenomenon was suggested. The transport selectivity is dependent on the selective adsorption resulting from the complex formation of chitosan with each metal ion. The separatin factor(${\alpha}_{Cu}{^{2+}}$) for the membrane was 9.5.

  • PDF

Heat Storage and Utilization System Using Metal Hydride (수소저항합금을 사용한 열저장 및 이용시스템 연구)

  • Sim, K.S.;Han, S.D.;Kim, J.W.;Myung, K.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.169-175
    • /
    • 1998
  • Metal hydrides can be used for the purpose of heat storage and transportation from the industrial complex which own recoverable waste heats to the neighboring cities by the medium of hydrogen. The properties of metal hydrides, some problems of heat transportation using metal hydrides, and the example of heat transportation system were discussed.

  • PDF

DFT Study for Azobenzene Crown Ether p-tert-Butylcalix[4]arene Complexed with Alkali Metal Ion

  • Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.541-545
    • /
    • 2008
  • Stable molecular isomers were calculated for the azobenzene crown ether p-tert-butylcalix[4]arene (1) in the host and their alkali-metal-ion complexes. The structures of two distinct isomers (cis and trans) have been optimized using DFT B3LYP/6-31G(d,p) method. Trans isomer of 1 is found to be 11.69 kcal/mol more stable than cis analogue. For two different kinds of complexation mode, the alkali-metal-cation in the crown-ether moiety (exo) has much better complexation efficiency than in the benzene-rings (endo) pocket for both isomers of 1. Sodium ion has much better complexation efficiency than potassium ion in all kinds of complexation mode with host 1. The Na+ complexation efficiency of the trans-complex (1) in the exo-binding mode is 8.24 kcal/mol better than cis-exo analogue.

The Ion Effect on Dewaterability of Alumina-Metal EDTA System

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.559-564
    • /
    • 2003
  • The specific ion effects are observed in the alumina-metal EDTA(Ethylene Diamine Tetraacetic Acid) system. These effects seem to be associated with the fluidity of the metal ion in the complex. A consideration of the order of adsorption of the complexes on alumina indicates that a specific ion effect also affects the stability of the system. It is clear that EDTA and its heavy metal complexes have a significant effect on the dewaterability of alumina. These effects are not well represented by zeta potential measurements, especially for EDTA alone. With the nonspeciating complexes, though, the maximum permeability is predicted by the pH$\_$zpc/ from zeta potential measurements. At other pH value, the refiltration rate is better predicted by the state of coagulation as measured by log W.