Browse > Article
http://dx.doi.org/10.4014/jmb.1809.09027

Cadmium-Substituted Concanavalin A and Its Trimeric Complexation  

Park, Yeo Reum (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Kim, Da Som (Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University)
Lee, Dong-Heon (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Kang, Hyun Goo (Department of Neurology, Chonbuk National University School of Medicine)
Park, Jung Hee (Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University)
Lee, Seung Jae (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.12, 2018 , pp. 2106-2112 More about this Journal
Abstract
Concanavalin A (ConA) interacts with carbohydrates as a lectin, and recent reports proposed its application for detecting a diversity of viruses and pathogens. Structural studies have detailed the interaction between ConA and carbohydrates and the metal coordination environment with manganese and calcium ions (Mn-Ca-ConA). In this study, ConA was crystallized with a cadmium-containing precipitant, and the refined structure indicates that $Mn^{2+}$ was replaced by $Cd^{2+}$ (Cd-Ca-ConA). The structural comparison with ConA demonstrates that the metal-coordinated residues of Cd-Ca-ConA, that is Glu8, Asp10, Asn14, Asp19, and His24, do not have conformational shifts, but residues for sugar binding, including Arg228, Tyr100, and Leu99, reorient their side chains, slightly. Previous studies demonstrated that excess cadmium ions can coordinate with other residues, including Glu87 and Glu183, which were not coordinated with $Cd^{2+}$ in this study. The trimeric ConA in this study coordinated $Cd^{2+}$ with other residues, including Asp80 and Asp82, for complex generation. The monomer does not have specific interaction near interface regions with the other monomer, but secondary cadmium coordinated with two aspartates (Asp80 and Asp82) from monomer 1 and one aspartate (Asp16) from monomer 2. This study demonstrated that complex generation was induced via coordination with secondary $Cd^{2+}$ and showed the application potential regarding the design of complex formation for specific interactions with target saccharides.
Keywords
Biotechnology of lectins; concanavalin A; cadmium substitution; metal coordination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M cCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40: 658-674.   DOI
2 Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60: 2126-2132.   DOI
3 Laskowski RA, MacArthur MW, Thornton JM. 1998. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8: 631-639.   DOI
4 Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. 2000. The structural features of concanavalin A governing non-proline peptide isomerization. J. Biol. Chem. 275: 19778-19787.   DOI
5 Doyle R, Keller K. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4-9.   DOI
6 Gerlits OO, Coates L, Woods RJ, Kovalevsky A. 2017. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. Biochemistry 56: 4747-4750.   DOI
7 Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. 2008. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J. Am. Chem. Soc. 130: 16933-16942.   DOI
8 Jain D, Kaur KJ, Salunke DM. 2001. Plasticity in proteinpeptide recognition: crystal structures of two different peptides bound to concanavalin A. Biophys. J. 80: 2912-2921.   DOI
9 Christie DJ, Munske GR, Appel DM, Magnuson JA. 1980. Conformational changes following Mn(II) binding to demetalized concanavalin A. Biochem. Biophys. Res. Commun. 95: 1043-1048.   DOI
10 Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. 2005. Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account. Biophys. J. 88: 1300-1310.   DOI
11 Chu ng NJ, Park YR, Lee DH, Oh SY, Park JH, Lee SJ. 2017. Heterometal-coordinated monomeric concanavalin A at pH7.5 from Canavalia ensiformis. J. Microbiol. Biotechnol. 27: 2241-2244.   DOI
12 Ki m D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, et al. 2017. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43.   DOI
13 D erewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, et al. 1989. The structure of the saccharidebinding site of concanavalin A. EMBO J. 8: 2189-2193.   DOI
14 Sanders JN, Chenoweth SA, Schwarz FP. 1998. Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability. J. Inorg. Biochem. 70: 71-82.   DOI
15 Bouckaert J, Loris R, Wyns L. 2000. Zinc/calcium- and cadmium/cadmium-substituted concanavalin A: interplay of metal binding, pH and molecular packing. Acta Crystallogr. D. Biol. Crystallogr. 56: 1569-1576.   DOI
16 Bezerra GA, Oliveira TM, Moreno FB, De Souza EP, Da Rocha BA, Benevides RG, et al. 2007. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160: 168-176.   DOI
17 Kaushik S, Mohanty D, Surolia A. 2009. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys. J. 96: 21-34.   DOI
18 M agnuson JA, Alter GM, Appel DM, Christie DJ, Munske GR, Pandolfino ER. 1983. Metal ion binding to concanavalin A. J. Biosci. 5: 9-17.   DOI
19 M oothoo DN, Naismith JH. 1998. Concanavalin A distorts the ${\beta}-GlcNAc-(1{\rightarrow}2)$-Man linkage of ${\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}3)-[{\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}6)]$-Man upon binding. Glycobiology 8: 173-181.   DOI
20 Naismith JH, Habash J, Harrop SJ, Helliwell JR, Hunter WN, Wan TC, et al. 1993. Refined structure of cadmium-substituted concanavalin A at 2.0A resolution. Acta Crystallogr. D. Biol. Crystallogr. 49: 561-571.   DOI
21 Bouckaert J, Poortmans F, Wyns L, Loris R. 1996. Sequential structural changes upon zinc and calcium binding to metalfree concanavalin A. J. Biol. Chem. 271: 16144-16150.   DOI
22 E mmerich C, Helliwell JR, Redshaw M, Naismith JH, Harrop SJ, Raftery J, et al. 1994. High-resolution structures of single-metal-substituted concanavalin A: the Co, Ca-protein at 1.6 ${\AA}$ and the Ni, Ca-protein at 2.0 ${\AA}$. Acta Crystallogr. D. Biol. Crystallogr. 50: 749-756.   DOI
23 Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497.   DOI
24 Kabsch W. 2010. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66: 125-132.   DOI