DOI QR코드

DOI QR Code

Fabricating a Ceramic-Pressed-to-Metal Restoration with Computer-Aided Design, Computer-Aided Manufacturing and Selective Laser Sintering: A Case Report

  • Lee, Ju-Hyoung (Department of Dentistry, Catholic University of Daegu School of Medicine) ;
  • Kim, Hyung Gyun (Department of Dentistry, Catholic University of Daegu School of Medicine)
  • Received : 2015.03.25
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

Even though a conventional metal ceramic restoration is widely in use, its laboratory procedure is still technique-sensitive, complex, and time-consuming. A ceramic-pressed-to-metal restoration (PTM) can be a reliable alternative. However, simplified laboratory procedure for a PTM is still necessary. The article is to propose a technique that reduces time and effort to fabricate a PTM with the aid of computer-aided design, computer-aided manufacturing and selective laser sintering technologies.

Keywords

References

  1. Suleiman SH, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand. 2013; 71: 1280-9. https://doi.org/10.3109/00016357.2012.757650
  2. Haselton DR, Diaz-Arnold AM, Dunne JT Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J Prosthet Dent. 2001; 86: 526-31. https://doi.org/10.1067/mpr.2001.119843
  3. Bagby M, Marshall SJ, Marshall GW Jr. Metal ceramic compatibility: a review of the literature. J Prosthet Dent. 1990; 63: 21-5. https://doi.org/10.1016/0022-3913(90)90259-F
  4. dos Santos JG, Fonseca RG, Adabo GL, dos Santos Cruz CA. Shear bond strength of metal-ceramic repair systems. J Prosthet Dent. 2006; 96: 165-73. https://doi.org/10.1016/j.prosdent.2006.07.002
  5. Chung KH, Hwang YC. Bonding strengths of porcelain repair systems with various surface treatments. J Prosthet Dent. 1997; 78: 267-74. https://doi.org/10.1016/S0022-3913(97)70025-8
  6. Lombardo GH, Nishioka RS, Souza RO, Michida SM, Kojima AN, Mesquita AM, Buso L. Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium. J Prosthodont. 2010; 19: 103-11. https://doi.org/10.1111/j.1532-849X.2009.00546.x
  7. Joias RM, Tango RN, Junho de Araujo JE, Junho de Araujo MA, Ferreira Anzaloni Saavedra Gde S, Paes-Junior TJ, Kimpara ET. Shear bond strength of a ceramic to Co-Cr alloys. J Prosthet Dent. 2008; 99: 54-9. https://doi.org/10.1016/S0022-3913(08)60009-8
  8. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater. 2008; 24: 1311-5. https://doi.org/10.1016/j.dental.2008.02.011
  9. de Melo RM, Travassos AC, Neisser MP. Shear bond strengths of a ceramic system to alternative metal alloys. J Prosthet Dent. 2005; 93: 64-9. https://doi.org/10.1016/j.prosdent.2004.10.017
  10. Fahmy NZ, Salah E. An in vitro assessment of a ceramic-pressed-to-metal system as an alternative to conventional metal ceramic systems. J Prosthodont. 2011; 20: 621-7. https://doi.org/10.1111/j.1532-849X.2011.00767.x
  11. Seo JM, Ahn SG. Fabrication of a metal-ceramic crown to fit an existing partial removable dental prosthesis using ceramic pressed to metal technique: a clinical report. J Adv Prosthodont. 2014; 6: 241-4. https://doi.org/10.4047/jap.2014.6.3.241
  12. Goldin EB, Boyd NW 3rd, Goldstein GR, Hittelman EL, Thompson VP. Marginal fit of leucite-glass pressable ceramic restorations and ceramicpressed- to-metal restorations. J Prosthet Dent. 2005; 93: 143-7. https://doi.org/10.1016/j.prosdent.2004.10.023
  13. Ishibe M, Raigrodski AJ, Flinn BD, Chung KH, Spiekerman C, Winter RR. Shear bond strengths of pressed and layered veneering ceramics to highnoble alloy and zirconia cores. J Prosthet Dent. 2011; 106: 29-37. https://doi.org/10.1016/S0022-3913(11)60090-5
  14. Holden JE, Goldstein GR, Hittelman EL, Clark EA. Comparison of the marginal fit of pressable ceramic to metal ceramic restorations. J Prosthodont. 2009; 18: 645-8. https://doi.org/10.1111/j.1532-849X.2009.00497.x
  15. Sorensen SE, Larsen IB, Jörgensen KD. Gingival and alveolar bone reaction to marginal fit of subgingival crown margins. Scand J Dent Res. 1986; 94: 109-14.
  16. Sorensen JA. A rationale for comparison of plaqueretaining properties of crown systems. J Prosthet Dent. 1989; 62: 264-9. https://doi.org/10.1016/0022-3913(89)90329-6
  17. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent. 1991; 65: 357-64. https://doi.org/10.1016/0022-3913(91)90225-L
  18. Ansong R, Flinn B, Chung KH, Mancl L, Ishibe M, Raigrodski AJ. Fracture toughness of heat-pressed and layered ceramics. J Prosthet Dent. 2013; 109: 234-40. https://doi.org/10.1016/S0022-3913(13)60051-7
  19. Cho SH, Chang WG. Mirror-image anterior crown fabrication with computer-aided design and rapid prototyping technology: a clinical report. J Prosthet Dent. 2013; 109: 75-8. https://doi.org/10.1016/S0022-3913(13)60018-9
  20. Bae JC, Kim WH, Jeon YC, Jeong CM, Yoon MJ, Huh JB. Reconstruction of anterior guidance using duplication technique of CAD/CAM: a case report. J Korean Acad Prosthodont. 2014; 52: 121-7. https://doi.org/10.4047/jkap.2014.52.2.121
  21. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed. St. Louis: Elsevier; 2006. p. 578-80.
  22. Wu L, Zhu H, Gai X, Wang Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J Prosthet Dent. 2014; 111: 51-5. https://doi.org/10.1016/j.prosdent.2013.09.011
  23. van Noort R. The future of dental devices is digital. Dent Mater. 2012; 28: 3-12. https://doi.org/10.1016/j.dental.2011.10.014
  24. Ortorp A, Jonsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater. 2011; 27: 356-63. https://doi.org/10.1016/j.dental.2010.11.015
  25. Ucar Y, Akova T, Akyil MS, Brantley WA. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent. 2009; 102: 253-9. https://doi.org/10.1016/S0022-3913(09)60165-7
  26. Kilicarslan MA, Ozkan P. Evaluation of retention of cemented laser-sintered crowns on unmodified straight narrow implant abutments. Int J Oral Maxillofac Implants. 2013; 28: 381-7. https://doi.org/10.11607/jomi.2635
  27. Xiang N, Xin XZ, Chen J, Wei B. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Dent. 2012; 40: 453-7. https://doi.org/10.1016/j.jdent.2012.02.006
  28. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of lasersintered and cast base metal dental alloys to porcelain. Dent Mater. 2008; 24: 1400-4. https://doi.org/10.1016/j.dental.2008.03.001
  29. Serra-Prat J, Cano-Batalla J, Cabratosa-Termes J, Figueras-Alvarez O. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: shear bond strength and sensitivity to thermocycling. J Prosthet Dent. 2014; 112: 600-5. https://doi.org/10.1016/j.prosdent.2014.01.004
  30. Xin XZ, Chen J, Xiang N, Gong Y, Wei B. Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing. Dent Mater. 2014; 30: 263-70. https://doi.org/10.1016/j.dental.2013.11.013
  31. Hedberg YS, Qian B, Shen Z, Virtanen S, Wallinder IO. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent Mater. 2014; 30: 525-34. https://doi.org/10.1016/j.dental.2014.02.008

Cited by

  1. Research on computer technical assistance tools for special children for music therapy pp.1573-7543, 2018, https://doi.org/10.1007/s10586-018-2210-3