• Title/Summary/Keyword: metabolites

Search Result 2,607, Processing Time 0.038 seconds

Fermentation Conditions for High Acceptability of Korean Traditional Fermented Beverage Kyejang (전통 발효음청류 계장의 기호도 우수 발효조건)

  • Jung, Jin-Kyoung;Song, Kyung-Mo;Yi, Sung-Hoon;Kim, Hyo-Jin;Han, Young-Sook;Lee, Myung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.137-144
    • /
    • 2015
  • Kyejang is a Korean traditional beverage manufactured from medicinal plants and fruits using honey, sugar, or starch in cold water. In this study, cinnamon-containing kyejang, which is a type of beverage Jang, was reproduced based on Imwonsibyukji's method published in 1827 in the Korean literature. Kyejang made by nuruk, cinnamon, and medicinal plants was prepared at various temperatures and periods. Kyejang was assayed for physiochemical properties (pH and acidity), contents of metabolites (organic acids, sugars, and amino acids), and sensory characteristics (aroma and taste). During fermentation, content of organic acids (e.g. lactic acid, acetic acid, and shikimic acid) increased, which lowered pH, increased acidity, and increased intensity of sour taste. In the case of free sugars, fructose and maltose levels decreased while glucose and mannitol levels increased during fermentation periods, and sweetness decreased. The main amino acid in kyejang was tryptophan, followed by asparagine, proline, and arginine. The sensory evaluation score of overall preference was highest for kyejang which was fermented at $20^{\circ}C$ for 3 days. The results will be provide the basic data of fermentation conditions for standardized manufacturing process of kyejang.

Effects on the Levels of Dietary Conjugated Linoleic Acid (CLA) Produced from Bio-Diesel By-Products on the Production and Composition of Dairy Cow Milk (바이오디젤유 부산물로 제조한 conjugated linoleic acid(CLA)의 첨가 수준이 젖소의 산유량 및 유성분에 미치는 영향)

  • Kim, Sang-Bum;Ku, Min-Jung;Lim, Dong-Hyun;Lee, Hyun-June;Park, Sung-Jai;Kwon, Eung-Gi;Kim, Sam-Churl;Park, Joong-Kook
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • This study was conducted to determine the effects of increasing the dietary levels of conjugated linoleic acid (CLA) which is produced from bio diesel by-products, on milk yield, milk composition, and blood metabolites of mid-lactating dairy cows. A total of 20 mid-lactating dairy cows ($631{\pm}25.0kg$) were assigned to one of four treatment groups and fed twice daily an equal amount of a basal diet ($NE_L$ 32 Mcal/d, CP 17%) contained 12kg/d of concentrate, 15kg/d of corn silage and 4kg/d of the hay mixture (tall fescue+orchard grass). Conjugated linoleic acid were fed for 2 weeks of adaptation periods and 4 weeks of collection periods at 0 (Control), 50 (T1), 100 (T2) and 150g/d (T3), respectively. By the increases of dietary CLA supplementation, milk yield and 4% fat corrected milk increased, whereas milk fat content decreased (p<0.05). The concentrations of stearic acid and oleic acid decreased with increasing dietary CLA supplementation, while the concentrations of total CLA increased (p<0.05). In conclusion, this study shown that the supplementation of dietary CLA manufactured from bio diesel by-products could improve milk yield and CLA concentrations of milk in mid-lactating dairy cows.

Development of New Natural Antioxidants for Cosmeceuticals (천연물 유래 항산화 기능성 화장품 신소재 개발)

  • Yoo, Ick-Dong;Kim, Jong-Pyung;Kim, Won-Gon;Yun, Bong-Sik;Ryoo, In-Ja
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.349-357
    • /
    • 2005
  • New antioxidative substances for cosmeceuticals were screened from natural resources such as microbial metabolites, mushrooms, and medicinal plants. Four antioxidants were isolated from the fungal metabolite of Eupenicillium shearii and their structures were determined to be new phenolic compounds. The compounds were designated as melanocins A, B, C, and D. Melanocins $A{\sim}D$ exhibited free radical scavenging activity on DPPH and superoxide with $EC_{50}$ values of $21{\sim}94\;and\;7{\sim}84{\mu}M$, respectively, which were stronger activity than those of ${\alpha}-tocopherol$ and BHA. Melanocin A showed anti-wrinkle effects on the UV-irrated hairless mouse skin. A novel hispidin antioxidative compound designated as inoscavin A was isolated from the fruiting body of the mushroom, Inonotus xeranticus. Inoscavin A scavenged superoxide radical with $EC_{50}$ values of $0.03{\mu}g/mL$, and inhibited rat liver microsomal lipid peroxidation with $EC_{50}$ values of $0.3{\mu}g/mL$. Benzastatins $A{\sim}G$, the novel antioxidants isolated from the culture of Streptomyces nitrosporeus showed potent lipid peroxidation inhibitory activity with $EC_{50}$ values of $3{\sim}30{\mu}M$. A cyclopentene compound with strong hypopigmentary effect was isolated from the fungal metabolite of Penicillium sp. and identifed as terrein. Terrein significantly reduced melanin levels in a melanomacyte cell line, Mel-Ab. It showed 10 times stronger activity than kojic acid, but exhibited no cytotoxic effect even in $100{\mu}M$. It was suggested that terrein reduced melanin synthesis by reducing tyrosinase production by MITF down-regulation.

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Effects of Supplementation of Multienzymes in Diets Containing Different Energy Levels on Growth Performance, Nutrient Digestibility, Blood Metabolites, Microbiota and Intestinal Morphology of Broilers (에너지 수준이 다른 사료에 복합효소제의 첨가가 육계의 사양성적, 영양소 소화율, 혈액성상, 장내미생물 균총 및 소장 융모에 미치는 영향)

  • Shim, Young Ho;Kim, Jin Soo;Hosseindoust, Abdolreza;Ingale, Santosh Laxman;Choi, Yo Han;Kim, Min Ju;Ohh, Seung Min;Ham, Hyung Bin;Chae, Byung Jo
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.28 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • The present study was conducted to investigate the effects on growth performance, nutrient digestibility, and gut health of broiler chickens when a dietary supplementation of multienzymes was added to diets, containing different energy levels. A total of 480 broiler chickens of similar body weight (Ross 308, 1-day-old) were randomly subjected to four treatments. The dietary treatments included a corn-soybean meal-based diet supplemented with: multienzyme (amylase+protease+ mannanase+xylanase+phytase), 0.05% enzyme, and different energy levels (3010 and 3060 kcal/kg). The experimental diets were fed to the chicks in a mash form for 35 days in two phases (1-21 d, phase I; and 22-35 d, phase II). During the overall period, chicks fed with diets supplemented with multienzymes had a better weight gain (p<0.05) and feed conversion ratio (FCR) than those fed with diets without enzymes. There was no difference in the growth rate and FCR among the chicks fed with diets supplemented with enzymes, even though the dietary energy levels were different. The apparent fecal and ileal digestibility of dry matter, gross, crude protein, calcium, and phosphorus were significantly enhanced (p<0.05). The population of cecal and ileal Lactobacillus spp. was significantly increased (p<0.05), and Clostridium spp. and coliforms were significantly decreased (p<0.05) in diets supplemented with enzymes. Villus height and villus height to crypt depth ratio in the small intestine was also significantly enhanced (p<0.05) in diets supplemented with enzymes. In conclusion, multienzyme supplementation had positive effects on the weight gain of broilers, FCR, digestibility of nutrients, and on the growth of intestinal microbiota.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF

Effects of Feeding System and NDF Level on Blood Metabolism of Growing Cows (사양체계 및 NDF 급여 수준이 번식용 육성우의 혈중 대사물질 변화에 미치는 영향)

  • Park, Byung Ki;Ahn, Jun Sang;Woo, Jong Min;Kim, Min Ji;Son, Gi Hwal;Cho, Sang Rae;Kim, Byong Wan;Kwon, Eung Gi;Shin, Jong Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.291-297
    • /
    • 2018
  • This study was conducted to investigate the effects of feeding system and NDF levels of TMR on blood metabolites in Holstein heifers. Fifty heifers were assigned to one of five treatments according to feed type and level of NDF: TMR (total mixed ration), CON (concentration + mixed forage), T1 (${\geq}53%$ NDF), T2 (50~53% NDF), and T3 (${\leq}50%$ NDF). Although GLU concentrate was not effected by feed type, increased significantly as the level of NDF decreased. There was no effect on concentrate of blood metabolite related with protein. As the level of NDF decreased, the blood ALB concentration was increased (p<0.05). The concentration of blood CHOL was higher in CON than those of TMR (p<0.05), and increased as the level of NDF decreased. The concentration of blood lipid was higher in CON than those of TMR and increased at lower level of NDF. The concentration of blood ALT were significantly lower in T3 than T1 and T2 (p<0.05). Thus, the results of this study suggest that the feeding system and NDF level may affect the blood metabolite concentration; however, the feed intake and other nutrient levels should also be considered.

Production and biological applications for marine proteins and peptides- An overview (해양생물로부터 기능성 펩티드의 생산 및 응용)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.278-301
    • /
    • 2018
  • Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.

Complete Genome Sequence and Antimicrobial Activities of Bacillus velezensis MV2 Isolated from a Malva verticillate Leaf (아욱 잎에서 분리한 Bacillus velezensis MV2의 유전체 염기서열 분석과 항균활성능 연구)

  • Lee, Hyeonju;Jo, Eunhye;Kim, Jihye;Moon, Keumok;Kim, Min Ji;Shin, Jae-Ho;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.111-119
    • /
    • 2021
  • A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known to produce diverse antimicrobial compounds including bacteriocins, polyketides, and non-ribosomal peptides. Antimicrobial compounds in the B. velezensis MV2 were extracted from culture supernatants using hydrophobic interaction chromatography. The crude extracts showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria; however, they were more effective against gram-positive bacteria. The extracts also showed antifungal activity against phytopathogenic fungi such as Fusarium fujikuroi and F. graminearum. In time-kill assays, these antimicrobial compounds showed bactericidal activity against Bacillus cereus, used as indicator strain. To predict the type of antimicrobial compounds produced by this strain, we used the antiSMASH algorithm. Forty-seven secondary metabolites were predicted to be synthesized in MV2, and among them, fourteen were identified with a similarity of 80% or more with those previously identified. Based on the antimicrobial properties, the antimicrobial compounds may be nonribosomal peptides or polyketides. These compounds possess the potential to be used as biopesticides in the food and agricultural industry as an alternative to antibiotics.

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.