Effects on the Levels of Dietary Conjugated Linoleic Acid (CLA) Produced from Bio-Diesel By-Products on the Production and Composition of Dairy Cow Milk

바이오디젤유 부산물로 제조한 conjugated linoleic acid(CLA)의 첨가 수준이 젖소의 산유량 및 유성분에 미치는 영향

  • Kim, Sang-Bum (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Ku, Min-Jung (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Lim, Dong-Hyun (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Lee, Hyun-June (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Park, Sung-Jai (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Kwon, Eung-Gi (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Kim, Sam-Churl (Dept. of Animal Science(Insti. of Agri. & Life Sci.), Gyeongsang National Univ.) ;
  • Park, Joong-Kook (Dairy Science Division, National Institute of Animal Science, RDA)
  • 김상범 (농촌진흥청 국립축산과학원) ;
  • 구민정 (농촌진흥청 국립축산과학원) ;
  • 임동현 (농촌진흥청 국립축산과학원) ;
  • 이현준 (농촌진흥청 국립축산과학원) ;
  • 박성재 (농촌진흥청 국립축산과학원) ;
  • 권응기 (농촌진흥청 국립축산과학원) ;
  • 김삼철 (경상대학교 축산학과(농업생명과학연구원)) ;
  • 박중국 (농촌진흥청 국립축산과학원)
  • Received : 2011.09.30
  • Accepted : 2011.10.28
  • Published : 2011.10.31

Abstract

This study was conducted to determine the effects of increasing the dietary levels of conjugated linoleic acid (CLA) which is produced from bio diesel by-products, on milk yield, milk composition, and blood metabolites of mid-lactating dairy cows. A total of 20 mid-lactating dairy cows ($631{\pm}25.0kg$) were assigned to one of four treatment groups and fed twice daily an equal amount of a basal diet ($NE_L$ 32 Mcal/d, CP 17%) contained 12kg/d of concentrate, 15kg/d of corn silage and 4kg/d of the hay mixture (tall fescue+orchard grass). Conjugated linoleic acid were fed for 2 weeks of adaptation periods and 4 weeks of collection periods at 0 (Control), 50 (T1), 100 (T2) and 150g/d (T3), respectively. By the increases of dietary CLA supplementation, milk yield and 4% fat corrected milk increased, whereas milk fat content decreased (p<0.05). The concentrations of stearic acid and oleic acid decreased with increasing dietary CLA supplementation, while the concentrations of total CLA increased (p<0.05). In conclusion, this study shown that the supplementation of dietary CLA manufactured from bio diesel by-products could improve milk yield and CLA concentrations of milk in mid-lactating dairy cows.

본 연구는 바이오디젤유 부산물로 제조한 공액리놀레산(Conjugated Linoleic Acid, CLA)을 비유중기 착유우에 첨가 수준을 달리하여 급여하였을 때 산유량, 유성분 및 혈액성상에 미치는 영향을 조사하고자 실시하였다. 공시동물은 비유중기 홀스타인 20두($631{\pm}25.0kg$)로 시험구당 5두를 배치하였으며, 기초사료($NE_L$ 32 Mcal/d, CP 17%)로 농후사료(12kg), 옥수수 사일리지(15kg) 및 톨페스큐+오차드그라스 건초(4kg)를 1일 2회 균등 급여하였다. CLA의 1일 급여수준은 0(대조구), 50(T1), 100(T2) 및 150g(T3)으로 달리하여 네처리군을 설정하고 예비 시험 2주와 본 시험 4주를 수행하였다. 착유우에 CLA의 급여량이 증가함에 따라 산유량과 4% FCM은 점진적으로 증가하였으나, 유지방 함량은 유의적으로 감소하였다(p<0.05). 사료중 CLA 첨가 수준이 증가함에 따라, 우유의 Stearic acid와 Oleic acid 함량은 감소한 반면, total CLA 함량은 증가하였다(p<0.05). 따라서 본 연구에서는 비유중기 착유우 사료에 바이오디젤유 부산물로 제조한 CLA를 첨가하는 것은 유생산량 증가와 유지방 내 CLA 함량 증가에 유리할 것으로 판단된다.

Keywords

References

  1. Ashes, J. R., B. D. Siebert, A. Z. Cuthbertson, and T. W. Scott. 1992. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids. 27: 629-631. https://doi.org/10.1007/BF02536122
  2. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists. Washington, DC.
  3. Baek, I. K., W. J. Maeng, S. H. Lee, H. G. Lee, S. R. Lee, J. K. Ha, S. S. Lee, and J. H. Hwang. 2004. Effects of the brown seaweed residues supplementation on in vitro fermentation and milk production and composition of lactating dairy cows. J. Anim. Sci. & Technol. 46: 373-386. https://doi.org/10.5187/JAST.2004.46.3.373
  4. Baumgard, L. H., B. A. Corl, D. A, Dwyer, A. Sebo, and D. E. Bauman. 2000. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. 278: 179-184.
  5. Baumgard, L. H., J. K. Sangster, and D. E. Bauman. 2001. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid(CLA). J. Nutr. 131: 1764-1769. https://doi.org/10.1093/jn/131.6.1764
  6. Bernal-Santos, G., J. W. Perfield, D. E. Barbano, and T. R. Overton. 2003. Production responses of dairy cows to dietary supplementation with conjugated linoleic acid(CLA) during the transition period and early lactation. J. Dairy Sci. 86: 3218-3228. https://doi.org/10.3168/jds.S0022-0302(03)73925-3
  7. Bu, D. P., J. Q. Wang, T. R. Dhiman, and S. J. Liu. 2007. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J. Dairy Sci. 90: 998-1007. https://doi.org/10.3168/jds.S0022-0302(07)71585-0
  8. Chin, S. F., W. Liu, J. M. Storkson, Y. L. Ha, and M. W. Pariza. 1992. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Comp. Anal. 5: 185- 197. https://doi.org/10.1016/0889-1575(92)90037-K
  9. Chouinard, P. Y., L. Corneau, A. Sebo, and D. E. Bauman. 1999a. Milk yield and Composition during abomasal infusion of conjugated linoleic acids in dairy cows. J. Dairy Sci. 82: 2737-2745. https://doi.org/10.3168/jds.S0022-0302(99)75530-X
  10. Chouinard, P. Y., L. Corneau, D. M. Barbano, L. E. Metzger, and D. E. Bauman. 1999b. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr. 129: 1579-1584. https://doi.org/10.1093/jn/129.8.1579
  11. Cook, M. E., C. C. Miller, Y. Park, and M. Pariza. 1993. Immune modulation by altered nutrient metabolism: Nutritional control of immune-induced growth depression. Poult. Sci. 72: 1301-1305. https://doi.org/10.3382/ps.0721301
  12. Giesy, J. G., M. A. McGuire, B. Shafii, and T. W. Hanson. 2002. Effect of dose of calcium salts of conjugated linoleic acid(CLA) on percentage and fatty acid content of milk fat in midlactation Holstein cows. J. Dairy Sci. 85: 2023-2029. https://doi.org/10.3168/jds.S0022-0302(02)74279-3
  13. Griinari, J. M., D. A. Dwyer, M. A. McGuire, D. E. Bauman, D. L. Palmquist, and K. V. V. Nurmela. 1998. Transoctadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81: 1251-1261. https://doi.org/10.3168/jds.S0022-0302(98)75686-3
  14. Gulati, S. K., S. McGrath, P. C. Wynn, and T. W. Scott. 2001. Rumen protected conjugated linoleic acids: Effects on milk composition in dairy cows. Proc. Nutr. Soc. Aust. 25: S85(Abstr.).
  15. Hanson, T. W., M. A. McGuire, J. M. Griinari, A. Sebo, A. Vinci, and K. Cummings. 1998. Feeding of rumen protected conjugated linoleic acid(CLA) to lactating dairy cows results in increased CLA concentrations and milk fat depression. Page 154 in Proc. Pacific Nothwest Anim. Nutr. Conf., Vancouver, British Columbia.
  16. Hambraeus, L. 1982. The significant of mother's milk and breast-seeding for development and later life. Bibl. Nutr. Dieta. 31: 1-16.
  17. Ha, Y. L., Grimm, N. K, and M. W. Pariza. 1987. Aniticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis. 8: 1881- 1887. https://doi.org/10.1093/carcin/8.12.1881
  18. Ha, Y. L., J. Storkson, and M. W. Pariza. 1990. Inhibition of benzo [$\alpha$]pyrene induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 50: 1097- 1101.
  19. Ip, C., S. F. Chin, J. A. Scimeca, and M. W. Pariza. 1991. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 51: 6118-6124.
  20. Jenkins, T. C. 1995. Butylsoyamide protects soybean oil from ruminal biohydrogenation: Effects of butylsoyamide on plasma fatty acids and nutrient digestion in sheep. J. Anim. Sci. 73: 818-823. https://doi.org/10.2527/1995.733818x
  21. Jenkins, T. C. 1998. Lactation performance and fatty acid composition of milk from Holstein cows fed 0 to 5% oleamide. J. Dairy Sci. 82: 1525-1531.
  22. Lee, K. N., D. Kritchevsky, and M. W. Pariza. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 108: 19-25. https://doi.org/10.1016/0021-9150(94)90034-5
  23. Loor, J. J. and J. H. Herbein. 2003. Reduced fatty acid synthesis and desaturation due to exogenous trans 10, cis12-CLA in cows fed oleic or linoleic oil. J. Dairy Sci. 86: 1354-1369. https://doi.org/10.3168/jds.S0022-0302(03)73720-5
  24. Mackle, T. R., J. K. Kay, M. J. Auldist, A. K. H. McGibbon, B. A. Philpott, L. H. Baumgard, and D. E. Bauman. 2003. Effects of abomasal infusion of conjugated linoleic acid on milk fat concentration and yield from pasture-fed dairy cows. J. Dairy Sci. 86: 644-652. https://doi.org/10.3168/jds.S0022-0302(03)73642-X
  25. Matsumoto, M., T. Kobayashi, A. Takenaka, and H. Itabashi. 1991. Defaunation effects of medium-chain fatty acids and their derivatives on goat rumen protozoa. J. Gen Microbiol. 37: 439-445. https://doi.org/10.2323/jgam.37.439
  26. Medeiros, S. R., D. E. Oliveira, L. J. M. Aroeira, M. A. McGuire, D. E. Bauman, and D. P. D. Lanna. 2000. The effect of long term supplementation of conjugated linoleic acid(CLA) to dairy cows grazing tropical pasture. J. Dairy Sci. 83(Supple. 1):169.(Abstr.).
  27. Middaugh, R. P., R. J. Baer, D. P. Casper, D. J. Schingoethe, and S. W. Seas. 1988. Characteristics of milk and butter from cows fed sunflower seeds. J. Dairy Sci. 71: 3179-3187. https://doi.org/10.3168/jds.S0022-0302(88)79922-1
  28. Miller, C. C., Y. Park, M. W. Pariza, and M. E. Cook. 1994. Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commun. 198: 1107-1112. https://doi.org/10.1006/bbrc.1994.1157
  29. Moallem, U., H. Lehrer, M. Zachut, L. Livshitz, and S. Yacoby. 2010. Production performance and pattern of milk fat depression of high-yielding dairy cows supplemented with encapsulated conjugated linoleic acid. Animal. 4: 641-652. https://doi.org/10.1017/S1751731109991364
  30. Morrison, W. R. and L. M. Smith. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron-flouride-methanol. J. Lipid Res. 5: 600-608.
  31. Murphy, J. L., A. Jones, S. Brookes, and S. A. Wootton. 1995. The gastrointestinal handling and metabolism of [1-$_{13}C$] palmitic acid in healthy women. J. Lipid Res. 30: 291-298. https://doi.org/10.1007/BF02536035
  32. National Research Council. 2001. Nutrient Requirements of Dairy Cattle, 7th rev. ed. National Academy of Science, Washington, DC.
  33. Nichols, P. L., Jr., S. F. Herb, and R. W. Riemenschneider. 1951. Isomers of conjugated linoleic acid. I. Alkali isomerized linoleic acid. J. Am. Chem. Soc. 73: 247-252. https://doi.org/10.1021/ja01145a084
  34. Park, Y., K. J. Albright, W. Liu, J. M. Storkson, M. E. Cook, and M. W. Pariza. 1997. Effect of conjugated linoleic acid on body composition in mice. Lipids. 32: 853-858. https://doi.org/10.1007/s11745-997-0109-x
  35. Parodi, P. W. 1999. Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. J. Dairy Sci. 82: 1339-1349. https://doi.org/10.3168/jds.S0022-0302(99)75358-0
  36. Perfield II, J. W., G. Bernal-Santos, T. R. Overton, and D. E. Bauman. 2002. Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85: 2609-2617. https://doi.org/10.3168/jds.S0022-0302(02)74346-4
  37. Perfield II, J. W., A. L. Lock, A. M. Pfeiffer, and D. E. Bauman. 2004. Effects of amide-protected and lipid-encapsulated conjugated linoleic acid(CLA) supplements on milk fat synthesis. J. Dairy Sci. 87: 3010-3016. https://doi.org/10.3168/jds.S0022-0302(04)73432-3
  38. Peterson, D. G., E. A. Matitashvili, and D. E. Bauman. 2003. Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. J. Nutri. 133: 3098-3102. https://doi.org/10.1093/jn/133.10.3098
  39. SAS. 2000. $SAS/STAT^{(R)}$ Software for PC. SAS Institute Inc., Cary, NC, USA.
  40. Song, M. K. and H. J. Sohn. 1997. Effect of oil source and treating method on in vitro fermentation characteristics and hydrogenation of C18-unsaturated fatty acids by rumen microbes. Kor. J. Anim. Nutr. Feed. 21: 463-474.
  41. Song, M. K. and S. H. Choi. 1998. Effects of lipid source and addition level on rumen microbial hydrogenation of C18 - unsaturated fatty acids and incorporation of oleic acid by rumen bacteria. J. Anim. Sci. & Technol. 40: 31-42.
  42. Van Soest, P. J. 1982. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY, USA.
  43. Wang, J. H., M. K. Song, Y. S. Son, and M. B. Chang. 2002a. Effect of concentrate level on the formation of conjugated linoleic acid and transoctadecenoic acid by ruminal bacteria when incubated with oilseed. Asian-Aust. J. Anim. Sci. 15: 687-694. https://doi.org/10.5713/ajas.2002.687
  44. Wang, J. H., M. K. Song, Y. S. Son, and M. B. Chang. 2002b. Addition effect of seed-associated or free linseed oil on the formation of cis-9, trans-11 conjugated linoleic acid and octadecenoic acid by ruminal bacteria in vitro. Asian-Aust. J. Anim. Sci. 15: 1115-1120. https://doi.org/10.5713/ajas.2002.1115
  45. Wu, Z., O. A. Ohajuruka, and D. L. Palmquist. 1991. Ruminal synthesis, biohydrogenation and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74: 3025- 3034. https://doi.org/10.3168/jds.S0022-0302(91)78488-9