• 제목/요약/키워드: metabolic signaling

검색결과 277건 처리시간 0.023초

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

Regional Differences in Mitochondrial Anti-oxidant State during Ischemic Preconditioning in Rat Heart

  • Thu, Vu Thi;Cuong, Dang Van;Kim, Na-Ri;Youm, Jae-Boum;Warda, Mohamad;Park, Won-Sun;Ko, Jae-Hong;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권2호
    • /
    • pp.57-64
    • /
    • 2007
  • Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.

Yoga Training Improves Metabolic Parameters in Obese Boys

  • Seo, Dae-Yun;Lee, Sung-Ryul;Figueroa, Arturo;Kim, Hyoung-Kyu;Baek, Yeong-Ho;Kwak, Yi-Sub;Kim, Na-Ri;Choi, Tae-Hoon;Rhee, Byoung-Doo;Ko, Kyung-Soo;Park, Byung-Joo;Park, Song-Young;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.175-180
    • /
    • 2012
  • Yoga has been known to have stimulatory or inhibitory effects on the metabolic parameters and to be uncomplicated therapy for obesity. The purpose of the present study was to test the effect of an 8-week of yoga-asana training on body composition, lipid profile, and insulin resistance (IR) in obese adolescent boys. Twenty volunteers with body mass index (BMI) greater than the 95th percentile were randomly assigned to yoga (age $14.7{\pm}0.5$ years, n=10) and control groups (age $14.6{\pm}1.0$ years, n=10). The yoga group performed exercises three times per week at 40~60% of heart-rate reserve (HRR) for 8 weeks. IR was determined with the homeostasis model assessment of insulin resistance (HOMA-IR). After yoga training, body weight, BMI, fat mass (FM), and body fat % (BF %) were significantly decreased, and fat-free mass and basal metabolic rate were significantly increased than baseline values. FM and BF % were significantly improved in the yoga group compared with the control group (p<0.05). Total cholesterol (TC) was significantly decreased in the yoga group (p<0.01). HDL-cholesterol was decreased in both groups (p<0.05). No significant changes were observed between or within groups for triglycerides, LDL-cholesterol, glucose, insulin, and HOMA-IR. Our findings show that an 8-week of yoga training improves body composition and TC levels in obese adolescent boys, suggesting that yoga training may be effective in controlling some metabolic syndrome factors in obese adolescent boys.

Cooperative Instruction of Signaling and Metabolic Pathways on the Epigenetic Landscape

  • Kim, Jung-Ae
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.264-270
    • /
    • 2018
  • Cells cope with diverse intrinsic and extrinsic stimuli in order to make adaptations for survival. The epigenetic landscape plays a crucial role in cellular adaptation, as it integrates the information generated from stimuli. Signaling pathways induced by stimuli communicate with chromatin to change the epigenetic landscape through regulation of epigenetic modifiers. Metabolic dynamics altered by these stimuli also affect the activity of epigenetic modifiers. Here, I review the current understanding of epigenetic regulation via signaling and metabolic pathways. In addition, I will discuss possible ways to achieve specificity of epigenetic modifications through the cooperation of stimuli-induced signal transduction and metabolic reprogramming.

Ursolic acid in health and disease

  • Seo, Dae Yun;Lee, Sung Ryul;Heo, Jun-Won;No, Mi-Hyun;Rhee, Byoung Doo;Ko, Kyung Soo;Kwak, Hyo-Bum;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.235-248
    • /
    • 2018
  • Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Protein Kinase C Activates ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Youm, Jae-Boum;Joo, Hyun;Kim, Hyung-Kyu;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.187-193
    • /
    • 2005
  • Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive $K^+$ $(K_{ATP})$ channels. We examined whether protein kinase C (PKC) modulated the activity of $K_{ATP}$ channels by recording $K_{ATP}$ channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12,13-didecanoate (PDD) enhanced pinacidil-induced $K_{ATP}$ channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). $K_{ATP}$ channel activity was not increased by $4{\alpha}-PDD$. In excised insideout patches, PKC stimulated $K_{ATP}$ channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of $K_{ATP}$ channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates $K_{ATP}$ channels in rabbit ventricular myocytes.

TMEM39A and Human Diseases: A Brief Review

  • Tran, Quangdon;Park, Jisoo;Lee, Hyunji;Hong, Youngeun;Hong, Suntaek;Park, Sungjin;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.205-209
    • /
    • 2017
  • Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.

Independent beneficial effects of aged garlic extract intake with regular exercise on cardiovascular risk in postmenopausal women

  • Seo, Dae-Yun;Lee, Sung-Ryul;Kim, Hyoung-Kyu;Baek, Yeong-Ho;Kwak, Yi-Sub;Ko, Tae-Hee;Kim, Na-Ri;Rhee, Byoung-Doo;Ko, Kyoung-Soo;Park, Byung-Joo;Han, Jin
    • Nutrition Research and Practice
    • /
    • 제6권3호
    • /
    • pp.226-231
    • /
    • 2012
  • The purpose of the study was to assess the effects of a 12 weeks aged garlic extract (AGE) regimen with regular exercise on cardiovascular disease (CVD) risk in postmenopausal women. A total of 30 postmenopausal women ($54.4{\pm}5.4$ years) were randomly divided into the following four groups: Placebo (Placebo; n = 6), AGE intake (AGEI; n = 8), exercise and placebo (Ex + Placebo; n = 8), exercise and AGE (Ex + AGE; n = 8) groups. The AGE group consume 80 mg per day, and exercise groups performed moderate exercise (aerobic and resistance) three times per week. After 12 weeks of treatment, body composition, lipid profile, and CVD risk factors were analyzed. Body weight was significantly decreased in AGEI, Ex + Placebo, and Ex + AGE groups compared to baseline. Body fat % was significantly decreased in the AGEI and Ex + Placebo groups. Body mass index (BMI) was significantly decreased in the AGEI, Ex + Placebo, and Ex + AGE groups. Fat-free mass was significantly decreased in the AGEI group. Total cholesterol (TC) was significantly lower in the Ex + Placebo compared to the Placebo group. AGE supplementation or exercise effectively reduced low-density lipoprotein (LDL-C). Triglyceride (TG) was significantly increased in the AGEI group. Malondialdehyde (MDA) levels were significantly decreased in the AGEI, Ex + Placebo, and Ex + AGE compared to the placebo group. AGE supplementation reduced homocysteine levels regardless of whether the women also exercised. The present results suggest that AGE supplementation reduces cardiovascular risk factors independently of exercise in postmenopausal women.

1,2-Dichloropropane (1,2-DCP)-Induced Angiogenesis in Dermatitis

  • Jin, Meiying;Hong, Youngeun;Lee, Hyunji;Tran, Quangdon;Cho, Hyeonjeong;Kim, Minhee;Kwon, So Hee;Kang, Nak Heon;Park, Jisoo;Park, Jongsun
    • Toxicological Research
    • /
    • 제35권4호
    • /
    • pp.361-369
    • /
    • 2019
  • 1,2-Dichloropropane (1,2-DCP) has been used as an industrial solvent and a chemical intermediate, as well as in soil fumigants. Human exposure may occur during its production and industrial use. The target organs of 1,2-DCP are the eyes, respiratory system, liver, kidneys, central nervous system, and skin. Repeated or prolonged contact may cause skin sensitization. In this study, 1,2-DCP was dissolved in corn oil at 0, 2.73, 5.75, and 8.75 mL/kg. The skin of mice treated with 1,2-DCP was investigated using western blotting, hematoxylin and eosin staining, and immunohistochemistry. 1,2-DCP was applied to the dorsal skin and both ears of C57BL/6J mice. The thickness of ears and the epidermis increased significantly following treatment, and the appearance of blood vessels was observed in the dorsal skin. Additionally, the expression of vascular endothelial growth factor, which is tightly associated with neovascularization, increased significantly. The levels of protein kinase-B (PKB), phosphorylated PKB, mammalian target of rapamycin (mTOR), and phosphorylated mTOR, all of which are key components of the phosphoinositide 3-kinase/PKB/mTOR signaling pathway, were also enhanced. Taken together, 1,2-DCP induced angiogenesis in dermatitis through the PI3K/PKB/mTOR pathway in the skin.