• 제목/요약/키워드: meshless methods

Search Result 45, Processing Time 0.018 seconds

A Review on the Numerical Simulations of Crack Propagation and Meshless Methods (균열전파 수치시뮬레이션과 무요소법의 연구동향)

  • Nam, Yong-Yun;Park, Seong-Hwan
    • 연구논문집
    • /
    • s.29
    • /
    • pp.69-82
    • /
    • 1999
  • Numerical techniques for the simulations of crack propagation are reviewed. This paper highlights the meshless methods as a potential method for the simulations. thus they are reviewed deeply. Especially the theoretical aspects of meshless methods are discussed. and it is shown that all meshless methods are based on the PUM and unified in GFEM even though they are originated from different sources.

  • PDF

무요소 해석법에 의한 초탄성 재료의 변형에 관한 연구

  • 진석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.732-735
    • /
    • 1995
  • A meshless method which is the new computational method being developed recently, is applied to the simulation of large deformation problems. Among the many types of meshless methods, the Reproducing Kernel particle method (RKPM) is used and the nearly incompressible hyperelastic materials are employed in simulations. The meshless methods can avoid metsh distortions and mesh entanglements that may frequently happen when the mesh-based methods like finite element method are used for the simulations of largely deformed materials. A general features of meshless methods are reviewed and the formulation of RKPM is presented. Next, the performance of explicit RKPM is demonstrated by examples.

  • PDF

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

Improvement Scheme of Nodal Integration in Meshless Method (무요소법에서 절점 적분의 개선방안)

  • Im, Jang-Geun;Song, Tae-Han;Seok, Byeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1376-1383
    • /
    • 2001
  • Meshless methods, developed in various ways over the past decade, have been attractive as new computational methods in that they do not need mesh generation in analyzing procedure. But most of these methods were not truly meshless methods because background meshes were required for the spatial integration of a weak form. Accordingly, in this paper, nodal integration for truly meshless methods has been studied, and an improvement scheme is proposed. To improve stabilization and accuracy, which are the weak points in previous nodal integration methods, the integration area is transformed to circle and then numerically integrated. This method does not need any adding term for stabilization in the variational formulation and then simplifies the integration procedure. Numerical test results show that the proposed method is more accurate, stable, and reasonable than the existed nodal integration methods.

A Study on the Enhancement of the Solution Accuracy of Meshless Particle Method (무요소절점법의 수치해 정도 향상을 위한 연구)

  • 이상호;김상효;강용규;박철원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.3-10
    • /
    • 1997
  • Meshless particle method is a numerical technique which does not use the concept of element. This method can easily handle special engineering problems which cause difficulty in the use of finite element method, however it has a drawback that essential boundary condition is not satisfied. In this paper, several studies for satisfying essential boundary conditions and enhancing the accuracy of solutions are discussed. Particular emphasis is placed on a new numerical technique in which finite elements are used on the boundaries to satisfy the essential boundary conditions and meshless particle method is used in the interior domain. For coupling of the two methods interface elements are introduced into the zone between the subdomains using meshless particle method and finite element method. The shape functions and the approximated displacement functions of the interface element are derived with the ramp function based on the shape function of finite elements. The whole numerical procedures are formulated by Galerkin method. Several numerical examples for enhancing the accuracy of solution in the meshless particle method and a new coupling method are presented.

  • PDF

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

Improvement Scheme of Nodal Integration in Meshless Method (무요소법에서 절점 적분의 효과적 개선방안)

  • 송태한;임장근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.53-60
    • /
    • 2001
  • Meshfree methods have been attracting issue as computational methods during past a few years. Nowadays, various meshfree methods such as EFGM, RKPM h-p cloud method and etc. were developed and applied in engineering problems. But, most of them were not truly meshless method because background mesh of cell was required for the spatial integration of a weak form. A nodal integration is required for truly meshless methods but it is known that this method gives a little unstable and incorrect solutions. In this paper, an improvement scheme of the existed nodal integration which the weak form can be simply integrated without any stabilization term is proposed. Numerical tests show that the proposed method is more convenient and gives more correct solutions than the previous method.

  • PDF

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

Shape Function Modification for the Imposition of EFGM Essential Boundary Conditions (EFGM에서 필수경계조건 처리를 위한 형상함수 수정법)

  • Seok, Byeong-Ho;Song, Tae-Han;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.803-809
    • /
    • 2000
  • For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.

Meshless equilibrium on line method (MELM) for linear elasticity

  • Sadeghirad, A.;Mohammadi, S.;Kani, I. Mahmoudzadeh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.511-533
    • /
    • 2010
  • As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line method which was previously used by the authors for enforcement of the Neumann boundary conditions in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is developed to use as the weak forms of the governing equations at inner nodes of the problem domain. The moving least squares (MLS) approximation is used to interpolate solution variables in this paper. Numerical studies have shown that this method is simple to implement, while leading to accurate results.