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ABSTRACT

  The finite element analysis of metal forming processes often fails because of severe mesh distortion at 

large deformation. As the concept of meshless methods, only nodal point data are used for modeling and 

solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, 

and a finite element mesh is unnecessary. This computational methods reduces time-consuming model 

generation and refinement effort. It provides a higher rate of convergence than the conventional finite 

element methods. The displacement shape functions are constructed by the reproducing kernel approximation 

that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing 

kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to 

verify the performance of meshless method for metal forming analysis. 
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1. Introduction

  In recent years, a new family of computational 

methods has emerged. The so-called meshless or 

meshfree methods have been investigated and used 

by many researchers for treating a large variety of 

engineering problems, involving usually large 

displacements as encountered for example in 

forming process simulations(free surface or moving 

boundary problems, moving interfaces, cracks 

propagation, etc.). In these problems accurate finite 

element solutions require significant computational 

efforts in remeshing steps. In contrast, meshless 

methods require only nodal data without explicit 

connectivity between nodes. The finite element 

method (FEM), which has been widely used in 

many engineering problem simulations, exhibits 

some limitations as the interpolation fails when the 

elements become too distorted [1-2]. The main 

advantage of meshless methods is the fact that the 

interpolation accuracy is not significantly affected 

by the nodal distribution. However, it is obvious  

that in any case, an appropriate nodal density is    

required in order to describe high gradients 

(boundary layers) as well as an anisotropic behavior  
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of the solution. For this reason, nodal adaptation is 

needed to compute numerical solutions of problems 

governed by partial differential equations. In the 

framework of the finite elements, these adaptation 

procedures are known as remeshing techniques. 

Remeshing is required for example when the 

element geometry becomes too distorted as a 

consequence of large domain changes. Moreover, 

sometimes, in order to improve the interpolation 

accuracy for describing boundary layers or an 

anisotropic behavior, new nodes must be added, 

removed or repositioned, and in fact this is not an 

easy task because the mesh associated to the new 

nodal distribution cannot contain any too distorted 

element. If this is not the case, local or global 

remeshing is required in order to guarantee the 

geometrical quality of the mesh elements. On the 

contrary, in meshless techniques, interpolation is 

free of that mesh requirement. Thus, introduction, 

eliminations or repositioning of nodes is a trivial 

task, because no geometrical restrictions exist. In 

this way, nodes can be added without geometrical 

checks in the regions where the solution must be 

improved (identified by using an appropriate error 

indicator). Once that the new nodes are placed into 

the domain, and for problems making use of 

internal variables, these variables can be initialized 

at those nodes using the standard meshless 

interpolation. This appealing feature of this kind of 

techniques simplifies significantly the refinement 

procedures. In this research, A meshless method 

approach based on the reproducing kernel particle 

method (RKPM) is applied to metal forming 

analysis. Numerical examples are analyzed to verify 

the performance of the meshless method for metal 

forming analysis. [3-8]  

2. Reproducing kernel particle method

  Consider an integral transformation T of a function u. 

dssusxTux a )()()( −Φ== ∫Ων                 (1)

where ν(x) is the transformation of u(x). If the 

kernel Φα(x-s) is chosen to be close to δ(x-s) then 

ν(x)→u(x). The kernel function used in this paper 

is: 
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where z=(x-s)/a and a is the support of the 

function Φa(z). This estimation is not accurate near 

the boundaries. Liu et al. corrected the 

approximation by introducing a modified kernel 

function as follows: 
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where u
a
(x) is called the reproduced function of 

u(x) and it exactly reproduces N-th order 

polynomial. 

C(x;x-s) is called the correction function and was 

developed to impose the completeness requirement, 

and H(x-s) is a vector of polynomial of order N. 
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Applying the trapezoidal rule to Eq.(3) one gets: 
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where NP is the total number of particles and ΨI’s 

can be interpreted as the shape functions of u
a
(x). 

Since the kernel function Φa in Eq.(2b) is C
2
(Ωx) 

one can show that ΨI is also C
2
(Ωx). The purpose 

of discretizing Eq.(3) is to obtain the shape 

functions, therefore △x in Eqs. (7) and (8) is set 

to unity for simplicity.   
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3. Meshless Formulation in 

Elasto-Plasticity with Contact 

Conditions

  

 Contact conditions are included to handle contact 

between tools and workpiece. The classical 

Coulomb law is used to model frictional contact 

and the penalty method is applied to assure 

impenetration. The contact traction’s tn and tt in the 

normal and tangential directions, respectively, are 

defined as follows: 

nnn gt α−=                                (9)
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  where µ is the coefficient of friction, αn and αt 

are the normal and tangential penalty numbers, and 

gn and gt are normal and tangential gaps between 

contact surfaces. The variational equation of the 

problem can be written as: 
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  The contact term is integrated by collocation 

formulation to yield 
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  where Ωx is the current domain, Γx
h
i is the 

current non-contact traction boundary, and Γx
c
is the 

contact boundary, τij is the Cauchy stress, bi is the 

body force, hi is the non-contact surface traction, 

Fn and Ft are the nodal normal and tangential 

contact forces and A is summed over the contact 

nodes on the deformable body.  

4. Numerical Examples

 Two examples of metal forming processes are 

modeled : cold upsetting and ring compression test. 

The upsetting process is a basic metal forming 

operation used in most forging sequences. The ring 

compression test was developed to experimentally 

estimate the friction coefficient in metal forming 

operations. These analysis are good test problems 

to verify the use of the meshless method as a 

simulation and design tool for metal forming 

applications.

4.1 Ring compression process 

  The test consists of compressing a ring at 

different ratios with flat and smooth tools and 

measuring the final height (hf) and final internal 

diameter (dif). During compression, the internal and 

external diameters will change according to the 

amount of compression and the friction condition of 

the interface. Hence, curves relating changes in the 

internal diameter with respect to the compression 

ratio characterize the coefficient of friction (µ). The 

ring test was simulated with physical properties of 

the cold forging steel 16MnCr5, considered as 

elastic–perfectly-plastic with yield stress σ =100Mpa, 

Young's modulus E=288GPa, and Poisson's ratio 

ν=0.3. The geometrical dimensions of the ring 

deo:dio:ho (initial external diameter:initial internal 

diameter:initial height) are in proportion to 6:3:2. 

The lubricant used in this test was the bisulfate of 

molybdenum, which is widely used in cold metal 

forming processes. Due to the axial and radial 

symmetries, the simulation was made with one 

quarter of the ring (discretized with 160 points). In 

Fig.1(a) the half cross section of the initial ring 
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model is shown. The kernel support was chosen to 

cover five points in each direction and the number 

of time steps was 1000. The prescribed displacement 

was applied at the master contact points which 

simulate the flat tool profile. The ring test 

simulation results for coefficients µ=0 and µ=0.15 

shown in Fig.1(b) are in agreement with Male's 

results. In the case of µ=0.3 and maximum friction, 

or stick condition, the results are close to Male's. 

Kernel functions with supports that cover five and 

seven points are used to study the solution 

convergence. Basically, with a bigger support the 

contact surface appears smoother, but the ring 

profile remains the same. 

Fig.1 (a) Ring meshless model, (b) ring calibration 

curves.

4.2 Cold upsetting process 

  The upsetting process was modeled as shown in 

Fig.2(a). In this analysis, axisymmetric formulation 

was used, and prescribed displacement was applied 

to the punch. The material constants are the as 

follows: Young's modulus E=288GPa, Poisson's 

ratio ν=0.3 and the material was considered 

perfectly plastic with yield stress σ =100Mpa. 

Coulomb friction (µ) between punch and part is 

estimated from experiments, mainly based on 

lubrication conditions and tools' finishing surface, 

and is adopted in the model to be equal to 0.15. 

The final shape is compared with experimental 

results in Fig.2(b). 

Fig.2 (a)initial and (b)deformed configuration of the 

upsetting operation.

  In this analysis, upsetting operation is successfully 

simulated by the meshless method without 

experiencing mesh distortion. Numerical prediction 

of the final shape of the formed part is in good 

agreement with the experimental results. 

5. Comparison of RKPM and FEM 

models

  Fig.3 presents the computed evolution of the 

axisymmetric RKPM and FEM models that were 

used in the numerical analysis of the process. The 

agreement between the profiles predicted by RKPM 

and FEM is excellent. 

  The plane-strain models were set-up at the 

mid-length cross section of the bars and the 

remaining numerical conditions were similar to 

those employed in the previous case. Fig.4 presents 
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Fig.3 Computed evolution of the compression of 

cylindrical preforms at different stages of 

deformation obtained from FEM (left) and RKPM 

(right): initial shape, 28% and 57% reduction in 

height. Mid and bottom figures also include the 

effective strain distribution predicted by RKPM and 

FEM.

the computed evolution of the RKPM and FEM 

models that were used in the analysis of the 

process as well as the predicted distribution of 

effective strain at 50% height reduction. The 

agreement is very good.

6. Conclusion

  This study presented a thorough description of 

the fundamentals of the reproducing kernel particle 

method (RKPM) for solving bulk metal forming 

problems.

Fig.4 Computed results for the compression of 

cylindrical performs at 57% height reduction. (Top) 

Effective stress distribution(MPa) predicted by FEM 

(left) and RKPM (right). (Bottom) Average stress 

distribution (MPa) predicted by FEM (left) and     

RKPM (right).

 

1. Details of computer implementation are included 

in the presentation and a new approach based on 

the rigid-plastic formulation for slightly compressible 

material models is proposed for simulating two- 

dimensional non-steady state processes. 

2. The validity and efficiency of the proposed 

RKPM approach for three-dimensional bulk metal 

forming processes were tested by comparing numerical 

predictions obtained from a special purpose 

computer program developed by the authors with 

finite element calculations. 

3. The experimental tests included in the presentation 

were designed to cover the basic flows and states 

of stress and strain that are commonly found in 

two-dimensional bulk forming operations. Data are 

presented for a wide range of variables such as 

material flow, geometry and forming load. 

4. A numerical example consisting of plane-strain 

backward extrusion is also included to test the 

validity of the proposed RKPM approach under large 

deformations and show its advantage over FEM. 

Good agreement between RKPM predictions, FEM 

calculations and experiments confirms the usefulness 

of the new approach for the simulation of 

- 25 -



Kyu-Taek Han : 한국기계가공학회지 제8권 제3호

two-dimensional bulk forming process.
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