• Title/Summary/Keyword: mesh density

Search Result 261, Processing Time 0.035 seconds

Adaptive Wireless Network Coding for Infrastructure Wireless Mesh Networks

  • Carrillo, Ernesto;Ramos, Victor
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3470-3493
    • /
    • 2019
  • IEEE 802.11s-based infrastructure Wireless Mesh Networks (iWMNs) are envisaged as a promising solution to provide ubiquitous wireless Internet access. The limited network capacity is a problem mainly caused by the medium contention between mesh users and the mesh access points (MAPs), which gets worst when the mesh clients employ the Transmission Control Protocol (TCP). To mitigate this problem, we use wireless network coding (WNC) in the MAPs. The aim of this proposal is to take advantage of the network topology around the MAPs, to alleviate the contention and maximize the use of the network capacity. We evaluate WNC when is used in MAPs. We model the formation of coding opportunities and, using computer simulations, we evaluate the formation of such coding opportunities. The results show that as the users density grows, the coding opportunities increase up to 70%; however, at the same time, the coding delay increments significantly. In order to reduce such delay, we propose to adaptively adjust the time that a packet can wait to catch a coding opportunity in an MAP. We assess the performance of moving-average estimation methods to forecast this adaptive sojourn time. We show that using moving-average estimation methods can significantly decrease the coding delay since they consider the traffic density conditions.

The Opening Size Change for Screen Tension (스크린 망사의 견장과 오프닝의 변화)

  • Jung, Gi-Young;Kang, Young-Reep
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The 200mesh screen was tensioned and fixed on a frame. When applied tension to 5N and 10N per unit area, a side length of opening of the screen was 163.223${\mu}m$ and 168.224${\mu}m$, respective. But side length not tensioned was 158.879${\mu}m$. We knew that a side length of opening of the screen rarely changes with tension applied to the screen. The appearances that a side length of opening of the screen expand little are due to a decreasing diameter of thread by means of tension. In a thickness measurement of screen, While the high density mesh screen that had a lot of knots that crossed a line of latitude and longitude per unit area appeared a higher numerical value, the low density mesh screen that had a few knots appeared a low numerical value.

Unstructured-grid Pressure-based Method for Analysing Incompressible flows (비정형격자 압력기준 유동해석기법을 이용한 비압축성 유동해석)

  • Kim J.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.42-47
    • /
    • 1998
  • The pressure-based methods are very popular in CFD because it requires less computer core memory compared to other coupled or density-based solvers. Currently structured-mesh methodology based on pressure-based algorithm is quite mature to apply to the practical problems. The unstructured mesh method needs much more computer memory than the structured-mesh method. However the pressure-based method utilizing the sequential approach does not require very large memory used for unstructured-mesh density-based solvers. The present study has developed the unstructured grid pressure-based method. Cell-centered finite volume method was selected due to robustness for imposing various boundary conditions and easy implementation of higher-order upwind scheme. The predictive capability of present method has validated against several benchmark problems.

  • PDF

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.

Development of Flat Plate Heat Pipe Using Screen Meshes (스크린 메쉬를 이용한 판형 히트 파이프의 개발)

  • Lee, Yong-Duck;Hong, Young-Ho;Kim, Hyun-Tae;Kim, Ku-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1506-1511
    • /
    • 2003
  • The present study proposes a new structure for a flat plate heat pipe which could embody a thin thickness, any shapes and high heat density a unit area. It is on the structure for the formation of vapor passages and the support of the case of the flat plate heat pipe. A screen mesh is used as the one. To verify the validity of the one, the flat plate heat pipe of 1.08mm thickness was made with a layer of the screen mesh with 14 and 100 mesh number respectively and tested. Here the screen mesh with 14 mesh number plays a role of the vapor passage and the support of the case and the screen mesh with 100 mesh number functions as the wick structure. T he results show that the screen mesh excellently carries out the function of the vapor passage and the support of the case.

  • PDF

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Tetrahedral Mesh Generation by Using the Advancing-Front Method and the Optimal Surface Triangular Mesh Generation Technique (전진경계기법과 최적 표면 삼각형 요소망 생성 기법을 이용한 사면체 요소망의 생성)

  • Lee M.C.;Joun M.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.138-147
    • /
    • 2006
  • A systematic approach to tetrahedral element or mesh generation, based on an advancing-front method and an optimal triangular mesh generation technique on the surface, is presented in this paper. The possible internal nodes are obtained by the octree-decomposition scheme. The initial tetrahedral mesh system is constructed by the advancing-front method and then it is improved by the quality improvement processes including mesh swapping and nodal smoothing. The approach is evaluated by investigating the normalized length, the normalized volume, the dihedral angle and the normalized quality

Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures

  • Liu, Wang;Li, Dong-Xu;Jiang, Jian-Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • A well-designed mesh shape of the cable net is of essential significance to achieve high performance of cable-network antenna reflectors. This paper is concerned with the mesh design problem for such antenna reflector structure. Two new methods for creating the topological forms of the cable net are first presented. Among those, the cyclosymmetry method is useful to generate different polygon-faceted meshes, while the topological mapping method is suitable for acquiring triangle-faceted meshes with different mesh grid densities. Then, the desired spatial paraboloidal mesh geometrical configuration in the state of static equilibrium is formed by applying a simple mesh generation approach based on the force density method. The main contribution of this study is that a general technical guide for how to create the connectivities between the nodes and members in the cable net is provided from the topological point of view. With the new idea presented in this paper, multitudes of mesh configurations with different net patterns can be sought by a certain rule rather than by empiricism, which consequently gives a valuable technical reference for the mesh design of this type of cable-network structures in the engineering.

Adaptive Mesh Refinement for Dealing with Shock Wave Analysis (폭발현상 해석을 위한 적응적 요소망 생성)

  • Jun, Yongtae;Lee, Minhyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.461-469
    • /
    • 2013
  • Computer simulation with FEM is very useful to analyze hypervelocity impact phenomena that are tremendously expensive or otherwise too impractical to analyze experimentally. Shock physics can be efficiently handled by mesh adaptation which allows finite element mesh to be locally optimized to resolve moving shock wave in explosion. In this paper, an adaptive meshing technique based upon quadtree data structure was applied to resolve ballistic impact phenomena. The technique can adaptively refine a mesh in the neighborhood of a shock and coarsen the mesh for the smooth flow behind the shock according to a criterion. The criterion for refinement and coarsening is based upon the standard deviation of the gradient of shock pressure on the associated field. Shock simulation starts with the rough mesh of the pressure field and mesh density is increased locally under the criterion at each time step. The results show that the mesh adaptation enables to minimize the global computation error of FEM and to increase storage and computational saving compared to the fixed resolution of the conventional static mesh approach.

Nickel Mesh for EMI Shielding by Continuous Electroforming (전주도금법에 의한 전자파 차폐용 Ni메쉬 제조기술)

  • Kim, Man;Gwon, Sik-Cheol;Park, Sang-Eon;Lee, Gyeong-Ryeol
    • 연구논문집
    • /
    • s.33
    • /
    • pp.183-190
    • /
    • 2003
  • Today, We have used many electronic equipment such as computer, TV, cellular phone and so on. These equipment radiate a large amount of EMI(Electromagnetic interference) which is occurred trouble of airplane, medical equipment, communicate equipment, and especially, human health. So, Ni mesh fabrication for EMI shielding by continuous electroforming process was investigated. Continuous electroforming apparatus was made by means of rotating cathode drum. And We investigated the characteristics of two types of Ni electroforming solution. One was made by laboratory and the other was produced by M cooperation. The grain size increased with increasing current density and bath temperature, and decreasing rotating speed of cathode drum. EDX results indicate that the Ni mesh electroformed by the KIMM solution is composed of pure Ni. But the Ni mesh electroformed by the M cooperation solution has Ni and S element. The incorporation of S element in the Ni mesh has a profoundly effect on mechanical properties such as hardness, internal stress and so on.

  • PDF