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1. Introduction

Microbial fuel cell (MFC) is an innovative environmental and 
energy system that converts biomass energy in wastewater into 
electrical energy and purify wastewater by using microbial elec-
trochemical reaction [1-5]. For the practical implementation of 
a MFC as a next generation wastewater treatment process, MFC 
performance should be enhanced far more than the current level 
[6, 7]. Significant advances have been made in improving MFC 
architecture, understanding the microbial community and their 

interaction and elucidating electrochemical reactions in last 
decades. However, in order to make MFC technology commer-
cially feasible, a number of limitations need to be overcome. 
Among them, improving cathodic performance is one of the 
major challenges to the practical implementation [8]. For this 
reason, development of cathode technology with improved per-
formance and low cost has been investigated a lot in the MFC 
field [9-13].

Nevertheless, it is necessary to improve the cathodic perform-
ance through valid strategies. In air cathodes, the catalytic layer 
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ABSTRACT
Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For 
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application of the SS mesh had little effect on ohmic impedance.
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is in contact with sewage and oxygen reduction reaction (ORR) 
occurs when hydrogen ions, electrons and oxygen meet in the 
catalyst layer [14]. The power density produced by the MFC 
highly depends on the cathodic catalytic activity and the cathodic 
internal resistance [15, 16], which accounts for one of largest 
portion in determining MFC performance. 

There have been a few cathode types so far in the MFC field 
[17]. The platinum-coated carbon cloth cathode is a most com-
monly used type, where tiny titanium wire is used as a current 
collector. This cathode produced up to 766 mW/m2 of maximum 
power density in 50-mM PBS buffer and 5-mM acetate [18]. Most 
recently, the stainless-steel-based cathode coated with activated 
carbon catalyst has been developed, which produces up to 802 
mW/m2 in 50 mM PBS buffer and 10 mM acetate [19]. Recent 
research shows that activated-carbon based cathodes produced 
more power than platinum-based cathodes in MFC. Since plati-
num is known to have a better catalytic activity, these results 
imply that the metal cathodic base in activated-carbon cathode 
facilitate electron flow in this cathode.

Metallic current collector is used as inexpensive current col-
lectors for anodes and cathodes in MFCs. For example, a metallic  
core rod of a carbon fiber brush is used to promote electron 
transfer from the bacteria to the external circuit, which produced 
a maximum power density of 2,400 mW/m2 in lab scale reactors 
[20]. The stainless steel (SS) mesh has been used as a cathode 
base, replacing carbon cloth [9, 10, 21]. The addition of SS 
mesh to the surface of an anion exchange membrane coated 
with a conductive graphite paint increased maximum power 
density from 450 mW/m2 to 575 mW/m2 [10]. These results sug-
gest that introduction of current collector to the cathode electrode 
can improve the performance of the MFC. 

The surface area of the current collector could affect the elec-

tron transport in the cathode. However, there is little report avail-
able regarding the influence of the current collector area of cathode 
on MFC performance. Therefore, in this study, it is hypothesized 
that increasing area of the current collector attached on the cathode 
electrode could increase electron transfer rate and power 
generation. To confirm this hypothesis, three current collectors 
having different surface areas were tested in a single-chamber 
cubic MFC with a carbon fiber brush anode and a Pt-coated carbon 
cloth cathode. As a metal current collector material, non-corrosive 
stainless steel (SUS 304) was applied. We found that increasing 
current collector of the cathode enhance MFC performance. 

2. Materials and Methods

2.1. MFC Construction

A platinum-coated carbon-cloth cathode was made of carbon cloth 
(surface area 7 cm2; 30% wet proofing; AvCarb 1071 HCB, Fuel 
cell earth, Boston, U.S.A.), with a PTFE diffusion layer on the 
air facing side (60wt% dispersion in H2O, Sigma-Aldrich, Young-in, 
Korea) and a Pt catalyst layer (0.5 mg/cm2

, 10% Pt on carbon, 
Sigma-Aldrich, Young-in, Korea) on the solution side [22]. Three 
different current collectors were made of non-corrosive stainless 
steel plate (SUS 304) and stainless steel mesh (# 30, type SUS 
304). A broad stainless steel plate (1 cm2 of contact area) (P), 
a broad stainless steel plate with a rounded-rim (4.3 cm2 of contact 
area) (PC), and a broad stainless steel plate with a stainless steel 
mesh (# 30, type SUS 304) (6.5 cm2 of contact area) (PM) were 
applied to a Pt-coated carbon cloth cathode (Fig. 1) [9, 23]. 

A single-chamber cubic-shaped reactor was made with poly-
carbonate, having 28 mL cylindrical bed volume of 4-cm length 

Fig. 1. The cathodes with three different current collectors and their schematics in the MFC. A stainless steel plate was used as an electrode
connector (1.0 cm2 of contact area) (P), a stainless steel plate and a rounded-rim current collector were used (4.3 cm2 of contact area)
(PC), and a stainless steel plate and a stainless-steel-mesh current collector were used (6.5 cm2 of contact area) (PM).
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and 3-cm diameter [21, 24-26]. A brush electrode was made 
with a carbon fiber brush (25-mm diameter and 50-mm length) 
twisted between two titanium rods (length 70 mm, 17 gauge; 
grade 2, Seoul Titanium). It was heat-treated at 450°C for 30 
min in a normal atmosphere condition [27] and located in the 
reactor horizontally to the cathode without a separator as pre-
viously described [25]. 

2.2. Inoculation and Operation

The MFC was inoculated with 28 mL of domestic wastewater 
(Gwangju Wastewater Treatment Plant) and was operated with 
1,000-Ω external resistance in a fed-batch mode. When the voltage 
started to exceed 100 mV, the internal solution was replaced 
with the 50-mM PBS medium (CH3COONa 0.41 g/L, NaH2PO4 
2.34 g/L, Na2HPO4 4.33 g/L, NH4Cl 0.31 g/L, KCl 0.13 g/L, trace 
mineral solution 10 mL/L and vitamin solution 10 mL/L) [28, 
29]. Medium was replaced when the voltage decreased to less 
than 10 mV. During the MFC operation, its voltage was measured 
using a systems switch/multimeter (3706A, Keithley).

2.3. Electrochemical Tests

Three cathode current collectors (P, PC, and PM) were tested 
under the same medium conditions with the same brush anode 
in order to minimize experimental variation [30]. All experiments 
were conducted in the MFC system, except for a current collector. 
Electrochemical analysis was performed using a potentiostat 
(ZIVE SP1, Wonatech, Korea). For electrochemical measurement, 
a Ag/AgCl reference electrode (RE-1B, ALS, Japan; -0.209 V vs. 
SHE) was inserted in the medium through a rubber gasket and 
located in the middle of the MFC. 

For polarization tests, the MFC was operated at 1,000-Ω ex-
ternal resistance for 3 h after medium change. Then, it was 
sit in an open circuit mode in a potentiostat for 2 h, followed 
by an electrochemical experiment. Electrical leads of the MFC 
was connected to a potentiostat as follows: a cathode to a working 
lead, an anode to a counter lead, a reference lead and an AI+ 
lead, a reference electrode to an AI- lead. Polarization curves 
were recorded through the linear sweep voltammetry (LSV) tech-
nique by decreasing cell voltage from OCV to 0 with a scan 
rate of 1 mV/s. Polarization measurement was performed in 
duplicate. 

Power density (p, mW/m2) was calculated using the following 
equations:

                                                        

 
 × 

(1)




  (2)

where I is current (mA), V is voltage (mV), A is a projected 
cathode area (7 cm2) and i is current density (mA/m2) [31]. 

Polarization resistances of anode (Ran), cathode (Rcat) and full 
cell (Rint) were calculated from a slope of linear part of each 
polarization curve. 

Optimum external resistance was calculated as following:

  


 




(3)

where Ropt is optimal external resistance for maximum power 
generation, Vopt is the optimum cell voltage for maximum power 
generation, A is the projected cathode area, Pmax is maximum 
power and Iopt is optimal current for maximum power generation.

Electrochemical impedance spectroscopy (EIS) for cathode 
electrodes was carried out in a three-electrode configuration. 
After medium change, the MFC was operated at 1,000 Ω external 
resistance for 3 h. Then, the MFC was connected to a potentiostat 
as described above, held in an open circuit mode for 5 min, 
and operated at an optimum current in a galvanostatic mode 
for 20 min. Cathode impedance was measured at an optimum 
current for each cathode, where maximum power is produced. 
0.1 mA of the amplitude of the alternating current and 105 - 
10-2 Hz of the frequency range were used for cathodic impedance 
measurement.  

2.4. Calculation 

Coulombic efficiencies (CE) were calculated as the ratio of recov-
ered coulombs to the theoretical amount of coulombs that could 
be produced from organic matter oxidation based on the change 
of total COD [6]. In order to measure the COD, the external 
resistance of the reactor was connected to 1,000 Ω. For total 
COD measurements, the medium of the reactor was replaced, 
the reactor was shaken and a sample was immediately taken. 
For soluble COD measurements, samples were taken when the 
voltage was below 50 mV and filtered through syringe filters 
(pore size 0.45 μm, 13 mm diameter, PVDF, CT-K Corporation). 
CE was calculated by the following equation:

   ∆

∫
×  (4)

where F is Faraday’s constant (96,485.3329 C/e-mol), V is the 
bed volume of the MFC (0.028 L), ∆COD is the change in COD 
during operation time (g-COD) and 8 is a conversion factor (8 
g-COD/e-mol). COD measurements were performed using a port-
able spectrophotometer (X-100, C-MAC, Daejeon, Korea). Final 
CODs were measured by using medium samples when the MFC 
voltage 50 mV.

Energy efficiency (EE) was calculated by the following equa-
tion:

 ∆

∫  
×  (5)

where ∆H is the heat of combustion of acetic acid (-875 kJ/mol) 
and n is the amount (mol) of substrate consumed.

All the potential values in this manuscript were reported 
in the SHE scale by using the following equation: 

mV vs. SHE = mV vs. Ag/AgCl + 209 mV (6)

t
0

t
0
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3. Results 

3.1. Power Density Curves and Polarization Curves

A stainless steel plate (P), a stainless steel plate with a rounded-rim 
(PC), and a stainless steel plate with a stainless steel mesh (PM) 
were applied to a Pt-coated carbon cloth cathode, and three differ-
ent cathodes were tested in the MFC. Contacting area of a carbon 
cloth cathode to a metal current collector was largest in the 
PM cathode (6.5 cm2), followed by the PC cathode (4.3 cm2), 
the P cathode (1.0 cm2) (Fig. 1). As contacting area of a carbon 
cloth cathode to a metal current collector increased, MFC perform-
ance also increased in the order of PM, PC and P.

Among three different current collectors, PM produced the 
highest maximum power density (1,136 mW/m2), followed 
by PC (1,061 mW/m2) and P (1,044 mW/m2) in average (Fig. 
2(a), Table 1). PM also produced the highest optimum current 
density (3,752 mA/m2), followed by PC (3,715 mA/m2), P (3,621 
mA/m2) in average. PM produced the highest maximum cur-
rent density (7,610 mA/m2), followed by PC (7,346 mA/m2), 
P (7,133 mA/m2). Application of a stainless steel mesh to 
the cathode (PM) improved maximum power density, opti-
mum current density and maximum current density of the 
MFC by 8.8%, 3.6% and 6.7%, respectively, comparing with 
P having no stainless steel mesh.

Polarization resistance obtained from a linear part of each 
polarization curve in duplicate and their average was calcu-
lated (Fig. 2, Table 1) [32]. PM had the lowest cathodic polar-
ization resistance (81 Ω), followed by PC (84 Ω), P (96 Ω). 
For anodic polarization resistance, P had the lowest value 
(30 Ω), followed by PM (43 Ω), PC (44 Ω). Cathodic polarization 
esistance was higher than anodic polarization resistance by 47% 
in P, 48% in PC, and 69% in P. Internal resistances were 123 
Ω for P, 122 Ω for PC and 121 Ω for PM. Maximum power 
density can be produced when MFC is operated at an optimum 
external resistance, and they were 113 Ω for P, 109 Ω for PC 
and 105 Ω for PM. Optimum external resistance values were 
pretty similar to internal resistance values. Activation loss is 
detected in a low current region of in cathode polarization curves 
(Fig. 2(b)), showing  activation loss were originated mainly from 
the cathode. 

a

b

Fig. 2. Polarization and power density curves of full cells (a), and polar-
ization curves of anode and cathode electrodes (b). 

3.2. Electrochemical Impedance Spectroscopy Analysis

For more accurate and delicate measurement of ohmic and charge 
transfer impedance of the cathodes by excluding other irrelevant 
factors, cathodic EIS was performed in a galvanostatic mode 
at each optimum current for each MFC condition (Fig. 3 and 
Fig. 4). PM, producing the highest maximum power density, 
showed lowest cathodic ohmic and charge transfer impedance. 
Cathodic ohmic impedances were slightly different in the three 

Table 1. Analytical Data of Polarization and Power Density Curves (n = 2), Electrode Potentials Were Written in the SHE Scale

OCV (mV) pmax  (mW/m2) imax (mA/m2) iopt (mA/m2) Ropt (Ω)

P 757 ± 8 1,044 ± 184 7,133 ± 786 3,621 ± 462 113 ± 10

PC 762 ± 3 1,061 ± 155 7,346 ± 861 3,715 ± 424 109 ± 8

PM 772 ± 8 1,136 ± 104 7,610 ± 973 3,752 ± 430 115 ± 14


 (mV) 

 (mV) Rint (Ω) Rcat (Ω) Ran (Ω)

P -208.7 ± 13 61.8 ± 10 123 ± 8 96 ± 2 30 ± 9

PC -192.3 ± 8 79.2 ± 17 122 ± 10 84 ± 1 44 ± 11

PM -205.3 ± 9 81.1 ± 14 121 ± 15 81 ± 7 43 ± 9
OCV, open circuit voltage; pmax, maximum power density; imax, maximum current density; iopt, optimal current density; Ropt, optimal external 
resistance; 

 , optimum anode potential; 
 , optimum cathode potential; Rint, internal resistance of a full cell; Rcat, cathodic polarization

resistance; Ran, anodic polarization resistance
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forms. PM had the lowest ohmic impedance (20 Ω) followed 
by PC (21 Ω) and P (22 Ω). However, there was bigger differ-
ence in cathodic charge transfer impedance. PM also had 
the lowest cathodic charge transfer resistance (53 Ω), followed 
by PC (72 Ω), P (97 Ω). Cathodic charge transfer impedance 
of PM was 54% lower than that of P. 

Fig. 3. Nyquist plots and the equivalent circuit fittings of the cathodic 
EIS (dotted line) at the optimum current. The inset is the equivalent 
circuit for fitting cathode EIS: Rohm is ohmic impedance, Rct is 
charge transfer impedance, Q is constant phase element (CPE).

Fig. 4. Ohmic impedance (Rohm) and charge transfer impedance (Rct) 
in cathodes with different current collectors. A galvanostatic cath-
ode EIS was performed at each optimum current in each cathode. 
Optimum current for cathodic EIS was 2.0 mA for P, 2.1 mA 
for PC and 2.3 mA for PM (n = 1).

3.3. COD Removal, Coulombic Efficiency and Energy Efficiency

PC showed the highest CE (19.8%), followed by PM (19.0%) 
and P (15.0%). PC also showed the highest EE (6.4%), followed 
by PM (5.7%) and P (4.6%) (Table 2). These results show that 
introducing current collector on cathode enhances coulombic 
and energy recovery.

4. Discussion 

Increasing contacting area of a carbon cloth cathode to a metal 
current collector increased the power and current densities of 
the MFC by decreasing cathodic resistance. Among the three 
cathodic current collectors, a combination of stainless plate and 
a stainless steel mesh (PM) was the best current collector design 
for maximizing MFC performance. 

Due to the low electrical conductivity of the carbon cloth, 
carbon cloth cathode combined with a combination of stainless 
plate and a stainless steel mesh can be a practical solution for 
increasing power production. As a current collector, the stainless 
steel plate has a larger area than the conventional titanium wire, 
so that electrons from the bioanode can be supplied to the cathode 
with a less electrical resistance. In addition, the stainless steel 
mesh covers the entire carbon cloth cathode, so that it can directly 
supply electrons to the cathodic catalyst. Therefore, total catho-
dic resistance was reduced in this study. 

By applying a stainless steel mesh (SSM), cathodic polarization 
resistance decreased by up to 16%, and cathodic charge transfer 
impedance decreased by up to 39%, comparing with the P. Ohmic 
resistance includes contact resistance in the electrode, electrode 
material resistance and solution resistance. Charge transfer resist-
ance has to do with the process of electron transfer from one 
phase (e.g. electrode) to another (e.g. liquid). In the cathode 
system in our study, cathodic oxygen reduction is the main 
source of cathodic charge transfer resistance. Cathodic ohmic 
impedances of the three cathodes were very similar, showing 
that current collector did not influence contact resistance and 
material resistance in the cathodes so much in this study. 
However, the application of current collectors decreased charge 
transfer resistance significantly, implying that the SSM enhanced 
oxygen reduction reaction on the surface of the SSM. Previous 
studies also demonstrated use of stainless steel as cathode materi-
al for oxygen reduction [33-35]. 

The PM produced only 6.6% higher maximum power than 
the PC mainly by decreasing the charge transfer impedance by 
25.8%. The area covered by a current collector over the platinum 

Table 2. CE, EE, COD Removal Ratio, and Initial and Final CODs for Each Cathodic Condition. When MFC Voltage Decreased to Less Than 
10 mV, MFC Operation Was Stopped and Medium Was Replaced

CE
(%)

EE
(%)

Initial COD
(mg/L)

Final COD
(mg/L)

COD removal rate
(mg/L·h)

Batch time 
(h)

COD removal ratio
(%)

P 15.0 4.6 320 33.0 10.1 28.5 89.6

PC 19.8 6.4 320 17.6 15.1 20.0 94.5

PM 19.0 5.7 320 14.6 13.3 23.0 95.4
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layer was larger in the PM (6.5 cm2) than in the PC (4.3 cm2), 
these might interfere with mass transfer and cathodic reduction.  
However, both platinum and SSM can perform an oxygen reduc-
tion reaction. Because stainless steel has less oxygen reduction 
performance than platinum, there was not the big difference 
in maximum power production between the PM and the PC 
despite the difference in the current collector coverage.

In our study, the applied currents for EIS were different among 
the tested MFCs. Their charge transfer resistance difference might 
be due to their different applied currents. According to a previous 
study, anodic charge transfer impedance decreased as current 
density increased, but cathodic charge transfer impedance was 
almost unaffected by applied potential or current for EIS [36]. 
Therefore, the change in charge transfer resistance among the 
MFCs might be attributed to the different cathode structures 
rather than the applied currents for EIS.

One of main concerns in the scale-up of MFC is significant 
decrease of power density as electrode size increases [37]. 
Introducing SSM may resolve this problem in large-area cathodes 
by facilitating electron transfer and reducing cathodic charge 
transfer resistance. Since high hydrostatic pressure is another 
concern in practical implementation of MFC, a durable and rigid 
cathode for hydrostatic pressure is necessary. The SSM can give 
high mechanical strength to the cathode electrode, so that it 
can help the cathode electrode with withstanding the high 
pressure. 

Activation loss is the voltage loss that occurs when an electro-
chemical reaction is initiated. In the present study, cathodic 
activation loss was the main activation loss in the MFC (Fig. 
2), showing that abiotic catalyst in cathode is the main source 
of activation loss rather than the anodic microbial catalyst. This 
result is coincident with the previous observation of negligible 
activation loss in the bioanode [36]. 

5. Conclusions

Increasing contacting area of a carbon cloth cathode to a metal 
current collector increased the power, current densities, and 
coulombic and energy recovery of the MFC by decreasing catho-
dic resistance. Among three different current collectors, the PM 
cathode with a SS plate and a SS mesh produced the highest 
maximum power (1,136 mW/m2), the highest optimum current 
(3,752 mA/m2) and the highest maximum current (7,610 mA/m2). 
Application of a SS mesh to the cathode (PM) improved maximum 
power density, optimum current density and maximum current 
density of the MFC by 8.8%, 3.6% and 6.7%, respectively, compar-
ing with P having no SS mesh. PM had the lowest cathodic 
polarization resistance (81 Ω), followed by PC (84 Ω), P (96 
Ω). Internal resistances were 123 Ω for P, 122 Ω for PC and 
121 Ω for PM. Cathodic polarization resistance was 47% higher 
in P, 48% higher in PC and 69% higher in P than anodic polar-
ization resistance. Cathodic ohmic impedances were slightly 
different in the three forms: 20 Ω for PM, 21 Ω for PC and 
22 Ω for P. However, there was bigger difference in cathodic 
charge transfer impedance: 53 Ω for PM, 72 Ω for PC and 97 

Ω for P. In overall, by applying a SSM, cathodic polarization 
resistance decreased by up to 16%, and cathodic charge transfer 
impedance decreased by up to 39%. These enhancements in 
PM are possibly due to a SSM facilitating efficient electron trans-
port and effective oxygen reduction reaction on the surface of 
the SSM. Application of a current collector decreased charge 
transfer resistance significantly, but affected ohmic resistance 
negligibly. PC showed the highest CE (19.8%) and EE (6.4%), 
followed by PM (CE 19.0% and EE 5.7%) and P (CE 15.0% and 
EE 4.6%). Cathodic activation loss was the main activation loss 
in the MFC.
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