• Title/Summary/Keyword: memory-efficient design

Search Result 308, Processing Time 0.021 seconds

Implementation of the Frame Memory Hardware for MPEG-2 Video Encoder (MPEG-2 비디오 부호화기의 프레임 메모리 하드웨어 구현)

  • 고영기;강의성;이경훈;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1442-1450
    • /
    • 1999
  • In this paper, we present an efficient hardware architecture for the frame memory of the MPEG-2 video encoder. Both the total size of internal buffers and the number of logic gates are reduced by the proposed memory map which can provide an effective interface between MPEG-2 video encoder and the external DRAM. Furthermore, the proposed scheme can reduce the DRAM access time. To realize the frame memory hardware,$0.5\mu\textrm{m}$, VTI, vemn5a3 standard cell library is used. VHDL simulator and logic synthesis tool are used for hardware design and RTL (register transfer level) function verification. The frame memory hardware emulator of the proposed architecture is designed for gate-level function verification. It is expected that the proposed frame memory hardware using VHDL can achieve suitable performance for MPEG-2 MP@ML.

  • PDF

A Numerical Study of NAND Flash Memory on the cooling effect (낸드플래시 메모리의 냉각효과에 관한 수치적 연구)

  • Kim, Ki-Jun;Koo, Kyo-Woog;Lim, Hyo-Jae;Lee, Hyouk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117-123
    • /
    • 2011
  • The low electric power and high efficiency chips are required because of the appearance of smart phones. Also, high-capacity memory chips are needed. e-MMC(embedded Multi-Media Card) for this is defined by JEDEC(Joint Electron Device Engineering Council). The e-MMC memory for research and development is a memory mulit-chip module of 64GB using 16-multilayers of 4GB NAND-flash memory. And it has simplified the chip by using SIP technique. But mulit-chip module generates high heat by higher integration. According to the result of study, whenever semiconductor chip is about 10 $^{\circ}C$ higher than the design temperature it makes the life of the chip shorten more than 50%. Therefore, it is required that we solve the problem of heating value and make the efficiency of e-MMC improved. In this study, geometry of 16-multilayered structure is compared the temperature distribution of four different geometries along the numerical analysis. As a result, it is con finned that a multilayer structure of stair type is more efficient than a multilayer structure of vertical type because a multi-layer structure of stair type is about 9 $^{\circ}C$ lower than a multilayer structure of vertical type.

  • PDF

Efficient IFFT Design Using Mapping Method (Mapping 기법을 이용한 효율적인 IFFT 설계)

  • Jang, In-Gul;Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.11-18
    • /
    • 2007
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems such as WiBro, DAB and UWB systems. Most of the researches on the implementation of FFT processors have focused on reducing the complexities of multipliers, memory and control circuits. In this paper, to reduce the memory size required for IFFT(Inverse Fast Fourier Transform), we propose a new IFFT design method based on a mapping method. By simulations, it is shown that the reposed IFFT design method achieves more than 60% area reduction and much SQNR(Signal-to-Quantization-Noise Ratio) gain compared with previous IFFT circuits.

The Study of Circuit Model Parameter Generation Using Device Simulation (소자 시뮬레이션을 이용한 Circuit Model Parameter 생성에 대한 연구)

  • 이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.177-182
    • /
    • 2003
  • In the case of the flash memory, various kinds of transistors and the wide range of operation voltage are necessary to achieve the read/write operations. Therefore, the characteristics of transistors are measured in the silicon for the circuit design, and the test vehicle run must be processed. In this study, an efficient design flow is suggested using TCAD tools. The test vehicle is replaced with well-calibrated TCAD simulation. First, the calibration methodology is introduced and tested for flash memory device. The calibration errors are less than 5% of a full chip operation, which is accepted by the designers. The results of the calibration were used to predict I-V curves and model parameter of the various transistors for the design of flash device.

  • PDF

A Design and Verification of an Efficient Control Unit for Optical Processor (광프로세서를 위한 효율적인 제어회로 설계 및 검증)

  • Lee Won-Joo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.23-30
    • /
    • 2006
  • This paper presents design andd verification of a circuit that improves the control-operation problems of Stored Program Optical Computer (SPOC), which is an optical computer using $LiNbO_3$ optical switching element. Since the memory of SPOC takes the Delay Line Memory (DLM) architecture and instructions that are needless of operands should go though memory access stages, SPOC memory have problems; it takes immoderate access time and unnecessary operations are executed in Arithmetic Logical Unit (ALU) because desired operations can't be selectively executed. In this paper, improvement on circuit has been achieved by removing the memory access of instructions that are needless of operands by decoding instructions before locating operand. Unnecessary operations have been reduced by sending operands to some specific operational units, not to all the operational units in ALD. We show that total execution time of a program is minimized by using the Dual Instruction Register(DIR) architecture.

Development of Halfedge-based Triangular Mesh Data Structure (반모서리 기반의 삼각망 자료 구조 개발)

  • Chung, Yun-Chan;Chang, Min-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • Triangular mesh models are widely used in reverse engineering, computer graphics, rapid prototyping and NC(numerical controller) tool-path generation. Triangular mesh models are generated from point clouds, surface models and solid models. A halfedge-based triangular mesh data structure is proposed and the development considerations are presented. In the presented data structure, halfedge is the key data structure. Halfedge stores its triangle index and the order in the triangle. Triangles do not store the halfedge lists explicitly. Halfedge is referred by value and defined when it is required. Proposed data structure supports four design requirements: efficient rendering, compact memory, supporting efficient algorithms and easy programming.

A Study on Efficient Polynomial-Based Discrete Behavioral Modeling Scheme for Nonlinear RF Power Amplifier (비선형 RF 전력 증폭기의 효율적 다항식 기반 이산 행동 모델링 기법에 관한 연구)

  • Kim, Dae-Geun;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1220-1228
    • /
    • 2010
  • In this paper, we suggest a scheme to develop an efficient discrete nonlinear model based on polynomial structure for a RF power amplifier(PA). We describe a procedure to extract a discrete nonlinear model such as Taylor series or memory polynomial by sampling the input and output signal of RF PA. The performance of the model is analyzed varying the model parameters such as sample rate, nonlinear order, and memory depth. The results show that the relative error of the model is converged if the parameters are larger than specific values. We suggest an efficient modeling scheme considering complexity of the discrete model depending on the values of the model parameters. Modeling efficiency index(MEI) is defined, and it is used to extract optimum values for the model parameters. The suggested scheme is applied to discrete modeling of various RF PAs with various input signals such as WCDMA, WiBro, etc. The suggested scheme can be applied to the efficient design of digital predistorter for the wideband transmitter.

An Efficient Solution Method to MDO Problems in Sequential and Parallel Computing Environments (순차 및 병렬처리 환경에서 효율적인 다분야통합최적설계 문제해결 방법)

  • Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.236-245
    • /
    • 2011
  • Many researchers have recently studied multi-level formulation strategies to solve the MDO problems and they basically distributed the coupling compatibilities across all disciplines, while single-level formulations concentrate all the controls at the system-level. In addition, approximation techniques became remedies for computationally expensive analyses and simulations. This paper studies comparisons of the MDO methods with respect to computing performance considering both conventional sequential and modem distributed/parallel processing environments. The comparisons show Individual Disciplinary Feasible (IDF) formulation is the most efficient for sequential processing and IDF with approximation (IDFa) is the most efficient for parallel processing. Results incorporating to popular design examples show this finding. The author suggests design engineers should firstly choose IDF formulation to solve MDO problems because of its simplicity of implementation and not-bad performance. A single drawback of IDF is requiring more memory for local design variables and coupling variables. Adding cheap memories can save engineers valuable time and effort for complicated multi-level formulations and let them free out of no solution headache of Multi-Disciplinary Analysis (MDA) of the Multi-Disciplinary Feasible (MDF) formulation.

Programmable Memory BIST for Embedded Memory (내장 메모리를 위한 프로그램 가능한 자체 테스트)

  • Hong, Won-Gi;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.61-70
    • /
    • 2007
  • The density of Memory has been increased by great challenge for memory technology. Therefore, elements of memory become more smaller than before and the sensitivity to faults increases. As a result of these changes, memory testing becomes more complex. In addition, as the number of storage elements per chip increases, the test cost becomes more remarkable as the cost per transistor drops. Recent development in system-on-chip (SOC) technology makes it possible to incorporate large embedded memories into a chip. However, it also complicates the test process, since usually the embedded memories cannot be controlled from the external environment. Proposed design doesn't need controls from outside environment, because it integrates into memory. In general, there are a variety of memory modules in SOC, and it is not possible to test all of them with a single algorithm. Thus, the proposed scheme supports the various memory testing process. Moreover, it is able to At-Speed test in a memory module. consequently, the proposed is more efficient in terms of test cost and test data to be applied.

Development of Full Coverage Test Framework for NVMe Based Storage

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.